Skip to main content
Log in

Nodal Auxiliary Space Preconditioning for the Surface de Rham Complex

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This work develops optimal preconditioners for the discrete H(curl) and H(div) problems on two-dimensional surfaces by nodal auxiliary space preconditioning (Hiptmair and Xu in SIAM J Numer Anal 45:2483–2509, 2007). In particular, on unstructured triangulated surfaces, we develop fast and user-friendly preconditioners for the edge and face element discretizations of curl–curl and grad–div problems based on inverting several discrete surface Laplacians. The proposed preconditioners lead to efficient iterative methods for computing harmonic tangential vector fields on discrete surfaces. Numerical experiments on two- and three-dimensional hypersurfaces are presented to test the performance of those surface preconditioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aksoylu, B., Khodakovsky, A., Schröder, P.: Multilevel solvers for unstructured surface meshes. SIAM J. Sci. Comput. 26(4), 1146–1165 (2005). https://doi.org/10.1137/S1064827503430138

    Article  MathSciNet  MATH  Google Scholar 

  2. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Falk, R.S., Winther, R.: Multigrid in H(div) and H(curl). Numer. Math. 85(2), 197–217 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006). https://doi.org/10.1017/S0962492906210018

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold, D.N., Falk, R.S., Winther, R.: Geometric decompositions and local bases for spaces of finite element differential forms. Comput. Methods Appl. Mech. Engrg. 198(21-26), 1660–1672 (2009). https://doi.org/10.1016/j.cma.2008.12.017

    Article  MathSciNet  MATH  Google Scholar 

  6. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.) 47(2), 281–354 (2010). https://doi.org/10.1090/S0273-0979-10-01278-4

  7. Bank, R.E., Dupont, T.: An optimal order process for solving finite element equations. Math. Comp. 36(153), 35–51 (1981). https://doi.org/10.2307/2007724

    Article  MathSciNet  MATH  Google Scholar 

  8. Bank, R.E., Smith, R.K.: An algebraic multilevel multigraph algorithm. SIAM J. Sci. Comput. 23(5), 1572–1592 (2002). https://doi.org/10.1137/S1064827500381045

    Article  MathSciNet  MATH  Google Scholar 

  9. Bey, J.: Simplicial grid refinement: on Freudenthal’s algorithm and the optimal number of congruence classes. Numer. Math. 85(1), 1–29 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonito, A., Demlow, A., Licht, M.: A divergence-conforming finite element method for the surface Stokes equation. SIAM J. Numer. Anal. 58(5), 2764–2798 (2020). https://doi.org/10.1137/19M1284592

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonito, A., Pasciak, J.E.: Convergence analysis of variational and non-variational multigrid algorithms for the Laplace-Beltrami operator. Math. Comp. 81(279), 1263–1288 (2012). https://doi.org/10.1090/S0025-5718-2011-02551-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Bramble, J.H., Pasciak, J.E., Wang, J.P., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comp. 57(195), 23–45 (1991). https://doi.org/10.2307/2938661

    Article  MathSciNet  MATH  Google Scholar 

  13. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comp. 31(138), 333–390 (1977). https://doi.org/10.2307/2006422

    Article  MathSciNet  MATH  Google Scholar 

  14. Brandt, A., McCormick, S., Ruge, J.: Algebraic multigrid (AMG) for sparse matrix equations. In: Sparsity and its applications (Loughborough, 1983), pp. 257–284. Cambridge Univ. Press, Cambridge (1985)

  15. Buffa, A., Ciarlet Jr., P.: On traces for functional spaces related to Maxwell’s equations. II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24(1), 31–48 (2001). https://doi.org/10.1002/1099-1476(20010110)24:1<9::AID-MMA191>3.0.CO;2-2.

  16. Chen, L.: iFEM: an innovative finite element method package in Matlab (2009). University of California Irvine, Technical report

  17. Choi, S.C.T.: Iterative methods for singular linear equations and least-squares problems. ProQuest LLC, Ann Arbor, MI (2007). Thesis (Ph.D.)–Stanford University

  18. Choi, S.C.T., Paige, C.C., Saunders, M.A.: MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems. SIAM J. Sci. Comput. 33(4), 1810–1836 (2011). https://doi.org/10.1137/100787921

    Article  MathSciNet  MATH  Google Scholar 

  19. Cockburn, B., Demlow, A.: Hybridizable discontinuous Galerkin and mixed finite element methods for elliptic problems on surfaces. Math. Comp. 85(302), 2609–2638 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005). https://doi.org/10.1017/S0962492904000224

    Article  MathSciNet  MATH  Google Scholar 

  21. Dedner, A., Madhavan, P., Stinner, B.: Analysis of the discontinuous Galerkin method for elliptic problems on surfaces. IMA J. Numer. Anal. 33(3), 952–973 (2013). https://doi.org/10.1093/imanum/drs033

    Article  MathSciNet  MATH  Google Scholar 

  22. Demlow, A.: Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47(2), 805–827 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Demlow, A.: Convergence and quasi-optimality of adaptive finite element methods for harmonic forms. Numer. Math. 136(4), 941–971 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Demlow, A., Dziuk, G.: An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces. SIAM J. Numer. Anal. 45(1), 421–442 (2007). https://doi.org/10.1137/050642873

    Article  MathSciNet  MATH  Google Scholar 

  25. Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013). https://doi.org/10.1017/S0962492913000056

    Article  MathSciNet  MATH  Google Scholar 

  26. Fisher, M., Schröder, P., Desbrun, M., Hoppe, H.: Design of tangent vector fields. ACM Trans. Graph. 26, 56–1–56–9 (2007)

  27. Gaffney, M.P.: The harmonic operator for exterior differential forms. Proc. Nat. Acad. Sci. U.S.A. 37, 48–50 (1951). https://doi.org/10.1073/pnas.37.1.48

    Article  MathSciNet  MATH  Google Scholar 

  28. Gopalakrishnan, J., Neumüller, M., Vassilevski, P.S.: The auxiliary space preconditioner for the de Rham complex. SIAM J. Numer. Anal. 56(6), 3196–3218 (2018). https://doi.org/10.1137/17M1153376.

    Article  MathSciNet  MATH  Google Scholar 

  29. Hackbusch, W.: Multigrid methods and applications, Springer Series in Computational Mathematics, vol. 4. Springer-Verlag, Berlin (1985). https://doi.org/10.1007/978-3-662-02427-0

  30. Hiptmair, R.: Multigrid method for \({\textbf{H}}({\rm div})\) in three dimensions. Electron. Trans. Numer. Anal. 6(Dec.), 133–152 (1997). Special issue on multilevel methods (Copper Mountain, CO, 1997)

  31. Hiptmair, R.: Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36(1), 204–225 (1999). https://doi.org/10.1137/S0036142997326203

    Article  MathSciNet  MATH  Google Scholar 

  32. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002). https://doi.org/10.1017/S0962492902000041

    Article  MathSciNet  MATH  Google Scholar 

  33. Hiptmair, R., Ostrowski, J.: Generators of \(H_{1}({{\Gamma }_{h}},{\mathbb{Z}})\) for triangulated surfaces: construction and classification. SIAM J. Comput. 31(5), 1405–1423 (2002). https://doi.org/10.1137/S0097539701386526

  34. Hiptmair, R., Xu, J.: Nodal auxiliary space preconditioning in \(\textbf{H}(\textbf{curl})\) and \(\textbf{H}({\rm div})\) spaces. SIAM J. Numer. Anal. 45(6), 2483–2509 (2007). https://doi.org/10.1137/060660588

    Article  MathSciNet  MATH  Google Scholar 

  35. Holst, M.: Adaptive numerical treatment of elliptic systems on manifolds. Adv. Comput. Math. 15(1-4), 139–191 (2002) (2001). https://doi.org/10.1023/A:1014246117321

  36. Holst, M., Stern, A.: Geometric variational crimes: Hilbert complexes, finite element exterior calculus, and problems on hypersurfaces. Found. Comput. Math. 12(3), 263–293 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hong, Q., Li, Y., Xu, J.: An extended Galerkin analysis in finite element exterior calculus. Math. Comp. 91(335), 1077–1106 (2022)

    MathSciNet  MATH  Google Scholar 

  38. Kornhuber, R., Yserentant, H.: Multigrid methods for discrete elliptic problems on triangular surfaces. Comput. Vis. Sci. 11(4-6), 251–257 (2008). https://doi.org/10.1007/s00791-008-0102-4

    Article  MathSciNet  Google Scholar 

  39. Li, Y.: Some convergence and optimality results of adaptive mixed methods in finite element exterior calculus. SIAM J. Numer. Anal. 57(4), 2019–2042 (2019). https://doi.org/10.1137/18M1229080

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, Y.: Fast auxiliary space preconditioners on surfaces. arXiv e-prints, arXiv:2011.13502 (2021)

  41. Loghin, D., Wathen, A.J.: Analysis of preconditioners for saddle-point problems. SIAM J. Sci. Comput. 25(6), 2029–2049 (2004). https://doi.org/10.1137/S1064827502418203

    Article  MathSciNet  MATH  Google Scholar 

  42. Ma, Y.: Fast solvers for incompressible MHD systems. Penn State (2016). Thesis (Ph.D.)–The Pennsylvania State University

  43. Mardal, K.A., Winther, R.: Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 18(1), 1–40 (2011). https://doi.org/10.1002/nla.716

    Article  MathSciNet  MATH  Google Scholar 

  44. Monk, P.: Finite element methods for Maxwell’s equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003)

    Book  MATH  Google Scholar 

  45. Nédélec, J.C.: Mixed finite elements in \({\textbf{R}}^3\). Numer. Math. 35(3), 315–341 (1980)

  46. Nepomnyaschikh, S.V.: Decomposition and fictitious domains methods for elliptic boundary value problems. In: Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Norfolk, VA, 1991), pp. 62–72. SIAM, Philadelphia, PA (1992)

  47. Paige, C.C., Saunders, M.A.: Solutions of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12(4), 617–629 (1975). https://doi.org/10.1137/0712047

    Article  MathSciNet  MATH  Google Scholar 

  48. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical aspects of finite element methods, pp. 292–315. Lecture Notes in Math., Vol. 606. (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome (1977)

  49. Rodríguez, A.A., Bertolazzi, E., Ghiloni, R., Valli, A.: Construction of a finite element basis of the first de Rham cohomology group and numerical solution of 3D magnetostatic problems. SIAM J. Numer. Anal. 51(4), 2380–2402 (2013). https://doi.org/10.1137/120890648

    Article  MathSciNet  MATH  Google Scholar 

  50. Ruge, J.W., Stüben, K.: Algebraic multigrid. In: Multigrid methods, Frontiers Appl. Math., vol. 3, pp. 73–130. SIAM, Philadelphia, PA (1987)

  51. Saad, Y.: Iterative methods for sparse linear systems, second edn. Society for Industrial and Applied Mathematics, Philadelphia, PA (2003). https://doi.org/10.1137/1.9780898718003

  52. Schwarz, G.: Hodge decomposition–a method for solving boundary value problems. No. 262 in Lecture Notes in Mathematics, 1607. Springer-Verlag, Berlin (1995)

  53. Vaněk, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on smoothed aggregation. Numer. Math. 88(3), 559–579 (2001). https://doi.org/10.1007/s211-001-8015-y

    Article  MathSciNet  MATH  Google Scholar 

  54. Vassilevski, P.S., Wang, J.P.: Multilevel iterative methods for mixed finite element discretizations of elliptic problems. Numer. Math. 63(4), 503–520 (1992). https://doi.org/10.1007/BF01385872

    Article  MathSciNet  MATH  Google Scholar 

  55. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992). https://doi.org/10.1137/1034116

    Article  MathSciNet  MATH  Google Scholar 

  56. Xu, J.: The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing 56(3), 215–235 (1996). https://doi.org/10.1007/BF02238513. International GAMM-Workshop on Multi-level Methods (Meisdorf, 1994)

  57. Xu, J.: Fast Poisson-based solvers for linear and nonlinear PDEs. In: Proceedings of the International Congress of Mathematicians. Volume IV, pp. 2886–2912. Hindustan Book Agency, New Delhi (2010)

  58. Xu, J., Chen, L., Nochetto, R.H.: Optimal multilevel methods for \(H({\rm grad})\), \(H({\rm curl})\), and \(H({\rm div})\) systems on graded and unstructured grids. In: Multiscale, nonlinear and adaptive approximation, pp. 599–659. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-03413-8_14

  59. Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Amer. Math. Soc. 15(3), 573–597 (2002). https://doi.org/10.1090/S0894-0347-02-00398-3

    Article  MathSciNet  MATH  Google Scholar 

  60. Xu, J., Zikatanov, L.: Algebraic multigrid methods. Acta Numer. 26, 591–721 (2017). https://doi.org/10.1017/S0962492917000083

    Article  MathSciNet  MATH  Google Scholar 

  61. Xu, K., Zhang, H., Cohen-Or, D., Xiong, Y.: Dynamic harmonic fields for surface processing. Comput. Graph. 33, 391–398 (2009)

    Article  Google Scholar 

  62. Zikatanov, L.T.: Two-sided bounds on the convergence rate of two-level methods. Numer. Linear Algebra Appl. 15(5), 439–454 (2008). https://doi.org/10.1002/nla.556

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Professors Jinchao Xu and Ludmil Zikatanov for stimulating discussions about iterative methods of singular linear systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwen Li.

Additional information

Communicated by Doug Arnold.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y. Nodal Auxiliary Space Preconditioning for the Surface de Rham Complex. Found Comput Math (2023). https://doi.org/10.1007/s10208-023-09611-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10208-023-09611-0

Keywords

Mathematics Subject Classification

Navigation