Skip to main content
Log in

Rational Homotopy Type and Computability

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Given a simplicial pair (XA), a simplicial complex Y, and a map \(f:A \rightarrow Y\), does f have an extension to X? We show that for a fixed Y, this question is algorithmically decidable for all X, A, and f if Y has the rational homotopy type of an H-space. As a corollary, many questions related to bundle structures over a finite complex are likely decidable. Conversely, for all other Y, the question is at least as hard as certain special cases of Hilbert’s tenth problem which are known or suspected to be undecidable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. This is the triviality problem for group presentations, translated into topological language. This work was extended by Adian and others to show that many other properties of nonabelian group presentations are likewise undecidable.

  2. The results can plausibly be extended to nilpotent spaces.

  3. It’s worth pointing out that this fits into a larger family of localizations of spaces, another of which is used in the proof of Lemma 3.3.

References

  1. P. Andrews and M. Arkowitz, Sullivan’s minimal models and higher order Whitehead products, Canadian Journal of Mathematics 30 (1978), no. 5, 961–982.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. H. Brown, Finite computability of Postnikov complexes, Annals of Mathematics (1957), 1–20.

  3. M. Čadek, M. Krčál, J. Matoušek, F. Sergeraert, L. Vokřínek, and U. Wagner, Computing all maps into a sphere, J. ACM 61 (2014), no. 3, Art. 17, 44.

  4. M. Čadek, M. Krčál, J. Matoušek, L. Vokřínek, and U. Wagner, Extendability of continuous maps is undecidable, Discrete & Computational Geometry 51 (2014), no. 1, 24–66.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Čadek, M. Krčál, J. Matoušek, L. Vokřínek, and U. Wagner, Polynomial-time computation of homotopy groups and Postnikov systems in fixed dimension, SIAM Journal on Computing 43 (2014), no. 5, 1728–1780.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Čadek, M. Krčál, and L. Vokřínek, Algorithmic solvability of the lifting-extension problem, Discrete & Computational Geometry 57 (2017), no. 4, 915–965.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Denef, Hilbert’s tenth problem for quadratic rings, Proc. Amer. Math. Soc. 48 (1975), 214–220.

    MathSciNet  MATH  Google Scholar 

  8. J. Denef and L. Lipshitz, Diophantine sets over some rings of algebraic integers, J. London Math. Soc. (2) 18 (1978), no. 3, 385–391.

  9. Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer (2012).

  10. M. Filakovský and L. Vokřínek, Are two given maps homotopic? An algorithmic viewpoint, Foundations of Computational Mathematics 20 (2020), no. 2, 311–330.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. A. Griffiths and J. W. Morgan, Rational homotopy theory and differential forms, Birkhäuser, (1981).

  12. G. Lupton and S. B. Smith, Fibrewise rational H-spaces, Algebr. Geom. Topol. 12 (2012), no. 3, 1667–1694.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Manin and Sh. Weinberger, Integral and rational mapping classes, Duke Math. J. 169 (2020), no. 10, 1943–1969.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Mazur and K. Rubin, Ranks of twists of elliptic curves and Hilbert’s tenth problem, Invent. Math. 181 (2010), no. 3, 541–575.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337–341.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Milnor, On characteristic classes for spherical fibre spaces, Comment. Math. Helv. 43 (1968), 51–77.

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Mukherjee and P. Sankaran, Minimal models of oriented Grassmannians and applications, Math. Slovaca 50 (2000), no. 5, 567–579.

    MathSciNet  MATH  Google Scholar 

  18. B. Poonen, Using elliptic curves of rank one towards the undecidability of Hilbert’s tenth problem over rings of algebraic integers, Algorithmic number theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 33–42.

  19. B. Poonen, Hilbert’s tenth problem over rings of number-theoretic interest, notes for a lecture series at the Arizona Winter School on “Number Theory and Logic”, (2003).

  20. G. J. Porter,Higher-order Whitehead products, Topology 3 (1965), 123–135.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295.

  22. A. Romero, G. Ellis, and J. Rubio, Interoperating between computer algebra systems: computing homology of groups with Kenzo and GAP, ISSAC 2009—Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, ACM, New York, (2009), pp. 303–310. MR2742718

  23. J. Rubio and F. Sergeraert, Constructive algebraic topology, Bull. Sci. Math. 126 (2002), no. 5, 389–412.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Rubio and F. Sergeraert, Constructive homological algebra and applications, arXiv:1208.3816 [math.KT], 2012.

  25. F. Sergeraert, The computability problem in algebraic topology, Adv. Math. 104 (1994), no. 1, 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Shlapentokh, Hilbert’s tenth problem over number fields, a survey, Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), Contemp. Math., vol. 270, Amer. Math. Soc., Providence, RI, 2000, pp. 107–137.

  27. S. B. Smith, Rational type of classifying spaces for fibrations, Groups of homotopy self-equivalences and related topics (Gargnano, 1999), Contemp. Math., vol. 274, Amer. Math. Soc., Providence, RI, 2001, pp. 299–307.

    Google Scholar 

  28. E. H. Spanier, Algebraic topology, McGraw-Hill, (1966).

  29. J. Stasheff, H-spaces from a homotopy point of view, Lecture Notes in Mathematics, Vol. 161, Springer-Verlag, Berlin-New York, 1970.

  30. D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. (1977), no. 47, 269–331 (1978).

  31. D. Sullivan, Geometric topology: localization, periodicity and Galois symmetry, \(K\)-Monographs in Mathematics, vol. 8, Springer, (2005).

  32. L. Vokřínek, Decidability of the extension problem for maps into odd-dimensional spheres, Discrete & Computational Geometry 57 (2017), no. 1, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Shmuel Weinberger for explaining some facts about H-spaces, and Marek Filakovský, Lukáš Vokřínek, and Uli Wagner for other useful conversations and encouragement. I would also like to thank the two referees for their careful reading and their many corrections and suggestions which have greatly improved the paper. The second referee, in particular, caught a major error which was present in previous versions. I was partially supported by NSF Grant DMS-2001042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedor Manin.

Additional information

Communicated by Herbert Edelsbrunner.

In memory of Edgar H. Brown, 1926–2021.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manin, F. Rational Homotopy Type and Computability. Found Comput Math 23, 1817–1849 (2023). https://doi.org/10.1007/s10208-022-09582-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-022-09582-8

Keywords

Mathematics Subject Classification

Navigation