Skip to main content
Log in

Analysis and Convergence of Hermite Subdivision Schemes

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Hermite interpolation property is desired in applied and computational mathematics. Hermite and vector subdivision schemes are of interest in CAGD for generating subdivision curves and in computational mathematics for building Hermite wavelets to numerically solve partial differential equations. In contrast to well-studied scalar subdivision schemes, Hermite and vector subdivision schemes employ matrix-valued masks and vector input data, which make their analysis much more complicated and difficult than their scalar counterparts. Under the spectral condition or the spectral chain, analysis of Hermite subdivision schemes through factorization of matrix-valued masks has been extensively studied in the literature and sufficient conditions have been given for the convergence of Hermite subdivision schemes through the contractivity of their derived subdivision schemes. We contribute to the study of Hermite subdivision schemes from a different perspective by investigating vector subdivision operators acting on vector polynomials and by establishing connections among Hermite subdivision schemes, vector cascade algorithms, and refinable vector functions. This approach allows us to characterize and construct all masks for Hermite subdivision schemes, to explain the spectral condition and spectral chain in the literature, to characterize convergence and smoothness of Hermite subdivision schemes using vector cascade algorithms, and to provide simple factorizations of Hermite masks through the normal form of matrix-valued masks such that the Hermite subdivision scheme is convergent if and only if its derived subdivision scheme is contractive. We also constructively prove that there always exist arbitrarily smooth convergent Hermite subdivision schemes, whose basis vector functions are splines and have linearly independent shifts. Several examples of Hermite subdivision schemes with short support and high smoothness are presented to illustrate the results in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary subdivision, Memoirs of the AMS. Am. Math. Soc. 93 (453) (1991).

  2. M. Charina, C. Conti, T. Mejstrik, and J.-L. Merrien, Joint spectral radius and ternary hermite subdivision. Adv. Comput. Math. 47 (2021), no. 2, Paper No. 25.

  3. M. Charina, C. Conti, and T. Sauer, Regularity of multivariate vector subdivision schemes. Numer. Algorithms 39 (2005), 97–113.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Conti and S. Hüning, An algebraic approach to polynomial reproduction of Hermite subdivision schemes. J. Comput. Appl. Math. 349 (2019), 302–315.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Conti, M. Cotronei, and T. Sauer, Factorization of Hermite subdivision operators preserving exponentials and polynomials. Adv. Comput. Math. 42 (2016), 1055–1079.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Cotronei, C. Moosmüller, T. Sauer, and N. Sissouno, Level-dependent interpolatory Hermite subdivision schemes and wavelets. Constr. Approx. 50 (2019), 341–366.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Dubuc and J.-L. Merrien, Convergent vector and Hermite subdivision schemes. Constr. Approx. 23 (2006), 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Dubuc and J.-L. Merrien, Hermite subdivision schemes and Taylor polynomials. Constr. Approx. 29 (2009), 219–245.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Dubuc, B. Han, J.-L. Merrien, and Q. Mo, Dyadic \(C^2\) Hermite interpolation on a square mesh. Comput. Aided Geom. Design 22 (2005), 727–752.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Dyn and D. Levin, Analysis of Hermite-type subdivision schemes. Approximation theory VIII, Vol. 2, 117–124, Ser. Approx. Decompos., 6, World Sci. Publ., River Edge, NJ, 1995.

  11. N. Dyn and D. Levin, Analysis of Hermite-interpolatory subdivision schemes. Spline functions and the theory of wavelets, 105–113, CRM Proc. Lecture Notes, 18, Amer. Math. Soc., Providence, RI, 1999.

  12. N. Dyn and D. Levin, Subdivision schemes in geometric modelling. Acta Numer. 11 (2002), 73–144.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Han, Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets. J. Approx. Theory 110 (2001), 18–53.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Han, Vector cascade algorithms and refinable function vectors in Sobolev spaces. J. Approx. Theory 124 (2003), 44–88.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Han, Computing the smoothness exponent of a symmetric multivariate refinable function. SIAM J. Matrix Anal. Appl., 24 (2003), 693–714

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Han, Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix. Adv. Comput. Math. 24 (2006), 375–403.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Han, Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl. Comput. Harmon. Anal. 26 (2009), 14–42.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Han, The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets, Math. Comp., 79 (2010), 917–951.

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Han, Properties of discrete framelet transforms. Math. Model. Nat. Phenom. 8 (2013), 18–47.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Han, On linear independence of integer shifts of compactly supported distributions. J. Approx. Theory 201 (2016), 1–6.

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Han, Framelets and wavelets: Algorithms, analysis, and applications. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Cham, 2017. xxxiii + 724 pp.

  22. B. Han and R.-Q. Jia, Multivariate refinement equations and convergence of subdivision schemes. SIAM J. Math. Anal. 29 (1998), 1177–1199.

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Han and R. Lu, Compactly supported quasi-tight multiframelets with high balancing orders and compact framelet transforms. Appl. Comput. Harmon. Anal. 51 (2021), 295–332.

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Han and Q. Mo, Multiwavelet frames from refinable function vectors. Adv. Comput. Math. 18 (2003), 211–245.

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Han and Q. Mo, Analysis of optimal bivariate symmetric refinable Hermite interpolants. Commun. Pure Appl. Anal. 6 (2007), 689–718.

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Han and T. P.-Y. Yu, Face-based Hermite subdivision schemes. J. Concr. Appl. Math. 4 (2006), 435–450.

    MathSciNet  MATH  Google Scholar 

  27. B. Han, T. P.-Y. Yu and B. Piper, Multivariate refinable Hermite interpolant. Math. Comp. 73 (2004), 1913–1935.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Han, M. L. Overton, and T. Yu, Design of Hermite subdivision schemes aided by spectral radius optimization. SIAM J. Sci. Comp., 25 (2003), 643–656.

    Article  MathSciNet  MATH  Google Scholar 

  29. B. Han, T. Yu, and Y.  Xue, Noninterpolatory Hermite subdivision schemes. Math. Comp. 74 (2005), 1345–1367.

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Han and X. Zhuang, Analysis and construction of multivariate interpolating refinable function vectors. Acta Appl. Math. 107 (2009), 143–171.

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Hüning, Polynomial reproduction of Hermite subdivision schemes of any order. Math. Comput. Simulation 176 (2020), 195–205.

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Jeong and J. Yoon, Analysis of non-stationary Hermite subdivision schemes reproducing exponential polynomials. J. Comput. Appl. Math. 349 (2019), 452–469.

    Article  MathSciNet  MATH  Google Scholar 

  33. B. Jeong and J. Yoon, A new family of non-stationary hermite subdivision schemes reproducing exponential polynomials. Appl. Math. Comput. 366 (2020), 124763.

    MathSciNet  MATH  Google Scholar 

  34. R.-Q. Jia and Q.-T. Jiang, Spectral analysis of the transition operator and its applications to smoothness analysis of wavelets. SIAM J. Matrix Anal. Appl. 24 (2003), 1071–1109.

    Article  MathSciNet  MATH  Google Scholar 

  35. J.-L. Merrien, A family of Hermite interpolants by bisection algorithms. Numer. Algorithms 2 (1992), 187–200.

    Article  MathSciNet  MATH  Google Scholar 

  36. J.-L. Merrien and T. Sauer, A generalized Taylor factorization for Hermite subdivision schemes. J. Comput. Appl. Math. 236 (2011), 565–574.

    Article  MathSciNet  MATH  Google Scholar 

  37. J.-L. Merrien and T. Sauer, Extended Hermite subdivision schemes. J. Comput. Appl. Math. 317 (2017), 343–361.

    Article  MathSciNet  MATH  Google Scholar 

  38. J.-L. Merrien and T. Sauer, Generalized Taylor operators and polynomial chains for Hermite subdivision schemes. Numer. Math. 142 (2019), 167–203.

    Article  MathSciNet  MATH  Google Scholar 

  39. C. A. Micchelli and T. Sauer, On vector subdivision. Math. Z. 229 (1998), 621–674.

    Article  MathSciNet  MATH  Google Scholar 

  40. C. Moosmüller and N. Dyn, Increasing the smoothness of vector and Hermite subdivision schemes. IMA J. Numer. Anal. 39 (2019), 579–606.

    Article  MathSciNet  MATH  Google Scholar 

  41. C. Moosmüller, S. Hüning, and C. Conti, Stirling numbers and Gregory coefficients for the factorization of Hermite subdivision operators. IMA J. Numer. Anal., to appear.

  42. D.-X. Zhou, Multiple refinable Hermite interpolants. J. Approx. Theory 102 (2000), 46–71.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Professor Nira Dyn for discussing Hermite subdivision schemes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Han.

Additional information

Communicated by Nira Dyn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) under Grant RGPIN-2019-04276.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B. Analysis and Convergence of Hermite Subdivision Schemes. Found Comput Math 23, 165–218 (2023). https://doi.org/10.1007/s10208-021-09543-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-021-09543-7

Keywords

Mathematics Subject Classification

Navigation