Skip to main content
Log in

Effective Power Series Computations

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Let K be an effective field of characteristic zero. An effective tribe is a subset of \(K [[z_1, z_2, \ldots ]] = K \cup K {[}[z_1]] \cup K [[z_1, z_2]] \cup \cdots \) that is effectively stable under the K-algebra operations, restricted division, composition, the implicit function theorem, as well as restricted monomial transformations with arbitrary rational exponents. Given an effective tribe with an effective zero test, we will prove that an effective version of the Weierstrass division theorem holds inside the tribe and that this can be used for the computation of standard bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Alonso, F. J. Castro-Jiménez, and H. Hauser. Encoding algebraic power series. Technical report, ArXiv, 2014. http://arxiv.org/abs/1403.4104.

  2. M. E. Alonso, T. Mora, and R. Raimondo. A computational model for algebraic power series. J. Pure and Appl. Alg., 77:1–38, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Aschenbrenner, L. van den Dries, and J. van der Hoeven. Asymptotic Differential Algebra and Model Theory of Transseries. Number 195 in Annals of Mathematics studies. Princeton University Press, 2017.

  4. R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. Journal of the ACM, 25:581–595, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Della Dora, C. Dicrescenzo, and D. Duval. A new method for computing in algebraic number fields. In G. Goos and J. Hartmanis, editors, Eurocal’85 (2), volume 174 of Lect. Notes in Comp. Science, pages 321–326. Springer, 1985.

  6. J. Denef and L. Lipshitz. Ultraproducts and approximation in local rings. Math. Ann., 253:1–28, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Denef and L. Lipshitz. Power series solutions of algebraic differential equations. Math. Ann., 267:213–238, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Denef and L. Lipshitz. Decision problems for differential equations. The Journ. of Symb. Logic, 54(3):941–950, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. van den Dries. On the elementary theory of restricted elementary functions. J. Symb. Logic, 53(3):796–808, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero. Annals of Math., 79:109–326, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Hironaka. Idealistic exponents of singularity. In Algebraic geometry, The Johns Hopkins Centennial Lectures. John Hopkins University Press, 1975.

  12. J. van der Hoeven. Relax, but don’t be too lazy. JSC, 34:479–542, 2002.

    MathSciNet  MATH  Google Scholar 

  13. J. van der Hoeven. Transseries and real differential algebra, volume 1888 of Lecture Notes in Mathematics. Springer-Verlag, 2006.

  14. J. van der Hoeven. From implicit to recursive equations. Technical report, HAL, 2011. http://hal.archives-ouvertes.fr/hal-00583125.

  15. J. van der Hoeven. Computing with D-algebraic power series. Technical report, HAL, 2014. http://hal.archives-ouvertes.fr/hal-00979367.

  16. M. Janet. Sur les systèmes d’équations aux dérivées partielles. PhD thesis, Faculté des sciences de Paris, 1920. Thèses françaises de l’entre-deux-guerres. Gauthiers-Villars.

  17. D. Lazard. Gröbner bases, gaussian elimination and resolution of systems of algebraic equations. In J. A. van Hulzen, editor, Proc. EUROCAL’83, number 162 in Lect. Notes in Computer Sc., pages 146–156. Springer Berlin Heidelberg, 1983.

  18. A. J. Macintyre and A. J. Wilkie. On the decidability of the real exponential field. Technical report, Oxford University, 1994.

  19. K. Mahler. Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen. Math. Z., 32:545–585, 1930.

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Mora. An algorithm to compute the equations of tangent cones. In Proc. EUROCAM ’82, number 144 in Lect. Notes in Computer Sc., pages 158–165. Springer Berlin Heidelberg, 1982.

  21. J. F. Ritt. Differential algebra. Amer. Math. Soc., New York, 1950.

    Book  MATH  Google Scholar 

  22. D. Robertz. Formal Algorithmic Elimination for PDEs, volume 2121 of Lecture Notres in Mathematics. Springer, Cham, 2014.

  23. K. Weierstrass. Mathematische Werke II, Abhandlungen 2, pages 135–142. Mayer und Müller, 1895. Reprinted by Johnson, New York, 1967.

Download references

Acknowledgements

The author wishes to express his gratitude to the two referees for their careful reading and helpful comments, as well as to Alin Bostan and Lou van den Dries for historical references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joris van der Hoeven.

Additional information

Communicated by Joseph M. Landsberg.

This work has been supported by the ANR-10-BLAN 0109 LEDA Project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Hoeven, J. Effective Power Series Computations. Found Comput Math 19, 623–651 (2019). https://doi.org/10.1007/s10208-018-9391-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-018-9391-2

Keywords

Mathematics Subject Classification

Navigation