Foundations of Computational Mathematics

, Volume 18, Issue 3, pp 703–730 | Cite as

Convergence of a Mixed Finite Element–Finite Volume Scheme for the Isentropic Navier–Stokes System via Dissipative Measure-Valued Solutions

  • Eduard Feireisl
  • Mária Lukáčová-Medvid’ováEmail author


We study convergence of a mixed finite element–finite volume numerical scheme for the isentropic Navier–Stokes system under the full range of the adiabatic exponent. We establish suitable stability and consistency estimates and show that the Young measure generated by numerical solutions represents a dissipative measure-valued solutions of the limit system. In particular, using the recently established weak–strong uniqueness principle in the class of dissipative measure-valued solutions we show that the numerical solutions converge strongly to a strong solutions of the limit system as long as the latter exists.


Compressible Navier–Stokes system Finite volume scheme Finite element scheme Stability Convergence Measure-valued solution 

Mathematics Subject Classification

65M12 65M60 76N10 35K61 


  1. 1.
    E. Chiodaroli, C. De Lellis, and O. Kreml. Global ill-posedness of the isentropic system of gas dynamics. Comm. Pure Appl. Math., 68(7) (2015), 1157–1190.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Y. Cho, H.J. Choe, and H. Kim. Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures. Appl., 83 (2004), 243–275.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    C. De Lellis and L. Székelyhidi, Jr. On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal., 195(1) (2010), 225–260.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    V. Dolejší, M. Feistauer, J. Felcman and A. Kliková. Error estimates for barycentric finite volumes combined with nonconforming finite elements applied to nonlinear convection-diffusion problems. Appl. Math., 47 (2002), 301–340.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda, and E. Wiedemann. Dissipative measure-valued solutions to the compressible Navier-Stokes system. Calc. Var. Partial Differential Equations, 55(141) (2016), 20.MathSciNetzbMATHGoogle Scholar
  6. 6.
    E. Feireisl, R. Hošek, D. Maltese, and A. Novotný. Convergence and error estimates for bounded numerical solutions of the barotropic Navier–Stokes system. Numer Methods Partial Differential Eq. Published online doi: 10.1002/num.22140.
  7. 7.
    E. Feireisl, T. Karper, and M. Michálek. Convergence of a numerical method for the compressible Navier-Stokes system on general domains. Numer. Math., 134(2016), 667–704.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    E. Feireisl, T. Karper, and M. Pokorný. Mathematical theory of compressible viscous fluids: Analysis and numerics. Birkhäuser-Verlag, Basel, 2017.zbMATHGoogle Scholar
  9. 9.
    E. Feireisl, L. Lukáčová-Medvid’ová, Š. Nečasová, A. Novotný, and B. She. Asymptotic preserving error estimates for numerical solutions of compressible Navier–Stokes equations in the low Mach number regime. 2016. Preprint IM Prague, 2016-49.Google Scholar
  10. 10.
    E. Feireisl, A. Novotný, and H. Petzeltová. On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids. J. Math. Fluid Mech., 3 (2001), 358–392.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M. Feistauer. Mathematical Methods in Fluid Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics Series 67, Longman Scientific & Technical, Harlow, 1993.Google Scholar
  12. 12.
    M. Feistauer, J. Felcman, and M. Lukáčová-Medvid’ová. Combined finite element-finite volume solution of compressible flow, J. Comput. and Appl. Math., 63 (1995), 179–199.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    M. Feistauer, J. Felcman, M. Lukáčová-Medvid’ová, and G. Warnecke. Error estimates of a combined finite volume – finite element method for nonlinear convection – diffusion problems. SIAM J. Numer. Anal., 36(5) (1999), 1528–1548.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    M. Feistauer, J. Felcman, and I. Straškraba. Mathematical and Computational Methods for Compressible Flow. Clarendon Press, Oxford, 2003.zbMATHGoogle Scholar
  15. 15.
    M. Feistauer, J. Česenek, and V. Kučera. Discontinuous Galerkin method—a robust solver for compressible flow, Recent developments in the numerics of nonlinear hyperbolic conservation laws, Notes Numer. Fluid Mech. Multidiscip. Des., 120 (2013), 143–160.CrossRefzbMATHGoogle Scholar
  16. 16.
    U. Fjordholm, S. Mishra, and E. Tadmor. Arbitrarily high order accurate entropy stable essentially non-oscillatory schemes for systems of conservation laws. SIAM J. Num. Anal., 50 (2012), 544–573.CrossRefzbMATHGoogle Scholar
  17. 17.
    U. Fjordholm, R. Kappeli, S. Mishra, and E. Tadmor. Construction of approximate entropy measure valued solutions for hyperbolic systems of conservation laws. Foundations Comp. Math. (2015), 1–65.Google Scholar
  18. 18.
    U. Fjordholm, S. Mishra, and E. Tadmor. On the computation of measure-valued solutions. Acta Numer. (2016), 567–679.Google Scholar
  19. 19.
    T. Gallouët, L. Gastaldo, R. Herbin, and J.-C. Latché. An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations. M2AN Math. Model. Numer. Anal., 42(2) (2008), 303–331.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    T. Gallouët, R. Herbin, and J.-C. Latché. Kinetic energy control in explicit finite volume discretizations of the incompressible and compressible Navier–Stokes equations. Int. J. Finite Vol., 7(2) (2010), 1634–1655.Google Scholar
  21. 21.
    T. Gallouët, R. Herbin, D. Maltese, and A. Novotný. Error estimate for a numerical approximation to the compressible barotropic Navier-Stokes equations. IMA J. Numer. Anal., 36 (2016), 543–592.MathSciNetCrossRefGoogle Scholar
  22. 22.
    P. Gwiazda, A. Świerczewska-Gwiazda, and E. Wiedemann. Weak-strong uniqueness for measure-valued solutions of some compressible fluid models. Nonlinearity, 28 (2015), 3873–3890.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    V. Jovanović and Ch. Rohde. Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws. SIAM J. Numer. Anal., 43(6) (2006), 2423–2449.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    K. H. Karlsen and T. K. Karper. A convergent nonconforming finite element method for compressible Stokes flow. SIAM J. Numer. Anal., 48(5) (2010), 1846–1876.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    K. H. Karlsen and T. K. Karper. Convergence of a mixed method for a semi-stationary compressible Stokes system. Math. Comp., 80(275) (2011), 1459–1498.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    K. H. Karlsen and T. K. Karper. A convergent mixed method for the Stokes approximation of viscous compressible flow. IMA J. Numer. Anal., 32(3) (2012), 725–764.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    T. K. Karper. A convergent FEM-DG method for the compressible Navier-Stokes equations. Numer. Math., 125(3) (2013), 441–510.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    D. Kröner. Numerical Schemes for Conservation Laws. Wiley-Teubner, 1997.Google Scholar
  29. 29.
    P.-L. Lions. Mathematical topics in fluid dynamics, Vol.2, Compressible models. Oxford Science Publication, Oxford, 1998.zbMATHGoogle Scholar
  30. 30.
    A. Matsumura and T. Nishida. The initial value problem for the equations of motion of compressible and heat conductive fluids. Comm. Math. Phys., 89 (1983), 445–464.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    P. I. Plotnikov and W. Weigant. Isothermal Navier-Stokes equations and Radon transform. SIAM J. Math. Anal., 47(1) (2015), 626–653.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Y. Sun, C. Wang, and Z. Zhang. A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows. Arch. Ration. Mech. Anal., 201(2) (2011), 727–742.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    L. Székelyhidi and E. Wiedemann. Young measures generated by ideal incompressible fluid flows. Arch. Rational Mech. Anal., 206 (2012), 333–366.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    E. Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discr. Cont. Systems, 36(8) (2016), 4579–4598.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    E. Tadmor. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer., 12 (2003), 451–512.MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    E. Tadmor, W. Zhong. Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity. J. Hyperbolic Differ. Equ., 3 (2006), 529–559.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© SFoCM 2017

Authors and Affiliations

  • Eduard Feireisl
    • 1
  • Mária Lukáčová-Medvid’ová
    • 2
    Email author
  1. 1.Institute of Mathematics of the Academy of Sciences of the Czech RepublicPraha 1Czech Republic
  2. 2.Institute of MathematicsJohannes Gutenberg-University MainzMainzGermany

Personalised recommendations