Exponential Convergence of hp-FEM for Elliptic Problems in Polyhedra: Mixed Boundary Conditions and Anisotropic Polynomial Degrees

Article

Abstract

We prove exponential rates of convergence of hp-version finite element methods on geometric meshes consisting of hexahedral elements for linear, second-order elliptic boundary value problems in axiparallel polyhedral domains. We extend and generalize our earlier work for homogeneous Dirichlet boundary conditions and uniform isotropic polynomial degrees to mixed Dirichlet–Neumann boundary conditions and to anisotropic, which increase linearly over mesh layers away from edges and vertices. In particular, we construct \(H^1\)-conforming quasi-interpolation operators with N degrees of freedom and prove exponential consistency bounds \(\exp (-b\root 5 \of {N})\) for piecewise analytic functions with singularities at edges, vertices and interfaces of boundary conditions, based on countably normed classes of weighted Sobolev spaces with non-homogeneous weights in the vicinity of Neumann edges.

Keywords

hp-FEM Second-order elliptic problems in polyhedra Mixed boundary conditions Anisotropic polynomial degrees Exponential convergence 

Mathematics Subject Classification

65N30 

References

  1. 1.
    I. Babuška and B. Q. Guo. The \(h\)-\(p\) version of the finite element method for domains with curved boundaries. SIAM J. Numer. Anal., 25(4):837–861, 1988.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    I. Babuška and B. Q. Guo. Regularity of the solution of elliptic problems with piecewise analytic data. Part I. Boundary value problems for linear elliptic equation of second order. SIAM J. Math. Anal., 19(1):172–203, 1988.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    I. Babuška and B. Q. Guo. Approximation properties of the \(h\)-\(p\) version of the finite element method. Comput. Methods Appl. Mech. Engrg., 133(3-4):319–346, 1996.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk. Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal., 43(3):1457–1472, 2011.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    M. Costabel, M. Dauge, and S. Nicaise. Analytic regularity for linear elliptic systems in polygons and polyhedra.Math. Models Methods Appl. Sci., 22(8), 2012. doi:10.1142/S0218202512500157.
  6. 6.
    W. Dahmen and K. Scherer. Best approximation by piecewise polynomials with variable knots and degrees. J. Approx. Theory, 26(1):1–13, 1979.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    L. Demkowicz, J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz, and A. Zdunek. Computing with \(hp\) -Adaptive Finite Elements. Volume 2, Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. Chapman & Hall/CRC, November 2007.Google Scholar
  8. 8.
    P. Dutt, Akhlaq Husain, A. S. Vasudeva Murthy, and C. S. Upadhyay. \(h\)-\(p\) spectral element methods for three dimensional elliptic problems on non-smooth domains, Part-I: Regularity estimates and stability theorem. Proc. Indian Acad. Sci. Math. Sci., 125(2):239–270, 2015.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    P. Dutt, Akhlaq Husain, A. S. Vasudeva Murthy, and C. S. Upadhyay. \(h\)-\(p\) spectral element methods for three dimensional elliptic problems on non-smooth domains, Part-II: Proof of stability theorem. Proc. Indian Acad. Sci. Math. Sci., 125(3):413–447, 2015.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements, volume 159 of Applied Mathematical Sciences. Springer, 2004.Google Scholar
  11. 11.
    W. Gui and I. Babuška. The \(h,\;p\) and \(h\)-\(p\) versions of the finite element method in one dimension. II. The error analysis of the \(h\)- and \(h\)-\(p\) versions. Numer. Math., 49(6):613–657, 1986.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    B. Q. Guo. The \(h\)-\(p\) version of the finite element method for solving boundary value problems in polyhedral domains. In Boundary Value Problems and Integral Equations in Nonsmooth Domains, volume 167 of Lecture Notes in Pure and Appl. Math., pages 101–120. Dekker, New York, 1995.Google Scholar
  13. 13.
    B. Q. Guo and I. Babuška. The \(hp\)-version of the finite element method. Part I: The basic approximation results. Comp. Mech., 1:21–41, 1986.CrossRefMATHGoogle Scholar
  14. 14.
    B. Q. Guo and I. Babuška. The \(hp\)-version of the finite element method. Part II: General results and applications. Comp. Mech., 1:203–220, 1986.CrossRefMATHGoogle Scholar
  15. 15.
    B. Q. Guo and I. Babuška. Regularity of the solutions for elliptic problems on nonsmooth domains in \(\mathbb{R}^3\). I. Countably normed spaces on polyhedral domains. Proc. Roy. Soc. Edinburgh Sect. A, 127(1):77–126, 1997.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    B. Q. Guo and I. Babuška. Regularity of the solutions for elliptic problems on nonsmooth domains in \(\mathbb{R}^3\). II. Regularity in neighbourhoods of edges. Proc. Roy. Soc. Edinburgh Sect. A, 127(3):517–545, 1997.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Y. Maday, O. Mula, A.T. Patera, and M. Yano. The generalized empirical interpolation method: Stability theory on Hilbert spaces with an application to the Stokes equation. Comput. Methods Appl. Mech. Engrg., 287:310–334, 2015.MathSciNetCrossRefGoogle Scholar
  18. 18.
    K. Scherer. On optimal global error bounds obtained by scaled local error estimates. Numer. Math., 36:257–277, 1981.MathSciNetMATHGoogle Scholar
  19. 19.
    D. Schötzau and Ch. Schwab. Exponential convergence in a Galerkin least squares \(hp\)-FEM for Stokes flow. IMA J. Numer. Anal., 21(1):53–80, 2001.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    D. Schötzau and Ch. Schwab. Exponential convergence for \(hp\)-version and spectral finite element methods for elliptic problems in polyhedra. Math. Models Methods Appl. Sci., 25(9):1617–1661, 2015.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    D. Schötzau, Ch. Schwab, and A. Toselli. Mixed \(hp\)-DGFEM for incompressible flows. SIAM J. Numer. Anal., 40(6):2171–2194, 2003.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    D. Schötzau, Ch. Schwab, and A. Toselli. Mixed \(hp\)-DGFEM for incompressible flows. II. Geometric edge meshes. IMA J. Numer. Anal., 24(2):273–308, 2004.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    D. Schötzau, Ch. Schwab, and T. P. Wihler. \(hp\)-DGFEM for second-order elliptic problems in polyhedra. I: Stability on geometric meshes. SIAM J. Numer. Anal., 51(3):1610–1633, 2013.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    D. Schötzau, Ch. Schwab, and T. P. Wihler. \(hp\)-DGFEM for second-order elliptic problems in polyhedra. II: Exponential convergence. SIAM J. Numer. Anal., 51(4):2005–2035, 2013.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    D. Schötzau, Ch. Schwab, and T. P. Wihler. \(hp\)-DGFEM for second-order mixed elliptic problems in polyhedra. Math. Comp., 85(299):1051–1083, 2016.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Ch. Schwab. \(p\) - and \(hp\) -FEM – Theory and Application to Solid and Fluid Mechanics. Oxford University Press, Oxford, 1998.Google Scholar
  27. 27.
    T. P. Wihler and M. Wirz. Mixed \(hp\)-discontinuous Galerkin FEM for linear elasticity and Stokes flow in three dimensions. Math. Models Methods Appl. Sci., 22(8), 2012. doi:10.1142/S0218202512500169.
  28. 28.
    L. Zhu, S. Giani, P. Houston, and D. Schötzau. Energy norm a posteriori error estimation for \(hp\)-adaptive discontinuous Galerkin methods for elliptic problems in three dimensions. Math. Models Methods Appl. Sci., 21(2):267–306, 2011.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© SFoCM 2017

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity of British ColumbiaVancouverCanada
  2. 2.Seminar for Applied MathematicsETH ZürichZürichSwitzerland

Personalised recommendations