W. A. Adkins and S. H. Weintraub, Algebra: An approach via module theory, Graduate Texts in Mathematics, 136, Springer, New York, 1992.
D. Bini and M. Capovani, “Tensor rank and border rank of band Toeplitz matrices,” SIAM J. Comput., 16 (1987), no. 2, pp. 252–258.
MathSciNet
Article
MATH
Google Scholar
Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.
Book
MATH
Google Scholar
J.-L. Brylinski, “Algebraic measures of entanglement,” pp. 3–23, G. Chen and R. K. Brylinski (Eds), Mathematics of Quantum Computation, CRC, Boca Raton, FL, 2002.
Google Scholar
J. Buczyński and J. M. Landsberg, “Ranks of tensors and a generalization of secant varieties,” Linear Algebra Appl., 438 (2013), no. 2, pp. 668–689.
MathSciNet
Article
MATH
Google Scholar
P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity Theory, Grundlehren der Mathematischen Wissenschaften, 315, Springer-Verlag, Berlin, 1997.
MATH
Google Scholar
R. H.-F. Chan and X.-Q. Jin, An Introduction to Iterative Toeplitz Solvers, Fundamentals of Algorithms, 5, SIAM, Philadelphia, PA, 2007.
Book
Google Scholar
H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans, “Group-theoretic algorithms for matrix multiplication,” Proc. IEEE Symp. Found. Comput. Sci. (FOCS), 46 (2005), pp. 379–388.
Article
Google Scholar
H. Cohn and C. Umans, “A group-theoretic approach to fast matrix multiplication,” Proc. IEEE Symp. Found. Comput. Sci. (FOCS), 44 (2003), pp. 438–449.
Google Scholar
H. Cohn and C. Umans, “Fast matrix multiplication using coherent configurations,” Proc. ACM–SIAM Symp. Discrete Algorithms (SODA), 24 ( 2013), pp. 1074–1087.
Google Scholar
S. A. Cook, On the Minimum Computation Time of Functions, Ph.D. thesis, Harvard University, Cambridge, MA, 1966.
J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comp., 19 (1965), no. 90, pp. 297–301.
MathSciNet
Article
MATH
Google Scholar
D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,” J. Symbolic Comput., 9 (1990), no. 3, pp. 251–280.
MathSciNet
Article
MATH
Google Scholar
P. J. Davis, Circulant Matrices, John Wiley, New York, NY, 1979.
MATH
Google Scholar
V. De Silva and L.-H. Lim, “Tensor rank and the ill-posedness of the best low-rank approximation problem,” SIAM J. Matrix Anal. Appl., 30 (2008), no. 3, pp. 1084–1127.
MathSciNet
Article
MATH
Google Scholar
J. Demmel, I. Dumitriu, O. Holtz, and R. Kleinberg, “Fast matrix multiplication is stable,” Numer. Math., 106 (2007), no. 2, pp. 199–224.
MathSciNet
Article
MATH
Google Scholar
S. Friedland and L.-H. Lim, “Nuclear norm of higher-order tensors,” (2016). http://arxiv.org/abs/1410.6072.
M. Fürer, “Faster integer multiplication,” SIAM J. Comput., 39 (2009), no. 3, pp. 979–1005.
MathSciNet
Article
MATH
Google Scholar
G. Golub and C. Van Loan, Matrix Computations, 4th Ed., Johns Hopkins University Press, Baltimore, MD, 2013.
MATH
Google Scholar
N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd Ed., SIAM, Philadelphia, PA, 2002.
Book
MATH
Google Scholar
N. J. Higham, Functions of Matrices, SIAM, Philadelphia, PA, 2008.
Book
MATH
Google Scholar
N. J. Higham, “Stability of a method for multiplying complex matrices with three real matrix multiplications,” SIAM J. Matrix Anal. Appl., 13 (1992), no. 3, pp. 681–687.
MathSciNet
Article
MATH
Google Scholar
Intel 64 and IA-32 Architectures Optimization Reference Manual, September 2015. http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual
T. Kailath and J. Chun, “Generalized displacement structure for block-Toeplitz, Toeplitz-block, and Toeplitz-derived matrices,” SIAM J. Matrix Anal. Appl., 15 (1994), no. 1, pp. 114–128.
MathSciNet
Article
MATH
Google Scholar
A. Karatsuba and Yu. Ofman, “Multiplication of many-digital numbers by automatic computers,” Dokl. Akad. Nauk SSSR, 145 (1962), pp. 293–294 [English translation: Soviet Phys. Dokl., 7 (1963), pp. 595–596].
D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical algorithms, 3rd Ed., Addison–Wesley, Reading, MA, 1998.
V. K. Kodavalla, “IP gate count estimation methodology during micro-architecture phase,” IP Based Electronic System Conference and Exhibition (IP-SOC), Grenoble, France, December 2007. http://www.design-reuse.com/articles/19171/ip-gate-count-estimation-micro-architecture-phase.html
J. M. Landsberg, Tensors: Geometry and Applications, Graduate Studies in Mathematics, 128, AMS, Providence, RI, 2012.
Google Scholar
S. Lang, Algebra, Rev. 3rd Ed., Graduate Texts in Mathematics, 211, Springer, New York, NY, 2002.
F. Le Gall, “Powers of tensors and fast matrix multiplication,” Proc. Internat. Symp. Symbolic Algebr. Comput. (ISSAC), 39 (2014), pp. 296–303.
MathSciNet
MATH
Google Scholar
L.-H. Lim, “Tensors and hypermatrices,” in: L. Hogben (Ed.), Handbook of Linear Algebra, 2nd Ed., CRC Press, Boca Raton, FL, 2013.
Google Scholar
J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Rev. Ed., Graduate Studies in Mathematics, 30, AMS, Providence, RI, 2001.
W. Miller, “Computational complexity and numerical stability,” SIAM J. Comput., 4 (1975), no. 2, pp. 97–107.
MathSciNet
Article
MATH
Google Scholar
M. K. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press, New York, NY, 2004.
MATH
Google Scholar
G. Ottaviani, “Symplectic bundles on the plane, secant varieties and Lüroth quartics revisited,” Quad. Mat., 21 (2007), pp. 315–352.
Google Scholar
V. Y. Pan, Structured Matrices and Polynomials: Unified superfast algorithms, Birkhäuser, Boston, MA, 2001.
Book
MATH
Google Scholar
A. Schönhage, “Partial and total matrix multiplication,” SIAM J. Comput., 10 (1981), no. 3, pp. 434–455.
MathSciNet
Article
MATH
Google Scholar
A. Schönhage and V. Strassen, “Schnelle Multiplikation großer Zahlen,” Computing, 7 (1971), no. 3, pp. 281–292.
MathSciNet
Article
MATH
Google Scholar
G. Strang and S. MacNamara, “Functions of difference matrices are Toeplitz plus Hankel,” SIAM Rev., 56 (2014), no. 3, pp. 525–546.
MathSciNet
Article
MATH
Google Scholar
V. Strassen, “Gaussian elimination is not optimal,” Numer. Math., 13 (1969), no. 4, pp. 354–356.
MathSciNet
Article
MATH
Google Scholar
V. Strassen, “Rank and optimal computation of generic tensors,” Linear Algebra Appl., 52/53 (1983), pp. 645–685.
MathSciNet
Article
MATH
Google Scholar
V. Strassen, “Relative bilinear complexity and matrix multiplication,” J. Reine Angew. Math., 375/376 (1987), pp. 406–443.
MathSciNet
MATH
Google Scholar
V. Strassen, “Vermeidung von Divisionen,” J. Reine Angew. Math., 264 (1973), pp. 184–202.
MathSciNet
MATH
Google Scholar
A. L. Toom, “The complexity of a scheme of functional elements realizing the multiplication of integers,” Dokl. Akad. Nauk SSSR, 150 (1963), pp. 496–498 [English translation: Soviet Math. Dokl., 4 (1963), pp. 714–716].
C. F. Van Loan, “The ubiquitous Kronecker product,” J. Comput. Appl. Math., 123 (2000), no. 1–2, pp. 85–100.
MathSciNet
Article
MATH
Google Scholar
V. Vassilevska Williams, “Multiplying matrices faster than Coppersmith–Winograd,” Proc. ACM Symp. Theory Comput. (STOC), 44 (2012), pp. 887–898.
MathSciNet
MATH
Google Scholar
D. S. Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM, Philadelphia, PA, 2007.
Book
MATH
Google Scholar
S. Winograd, “Some bilinear forms whose multiplicative complexity depends on the field of constants,” Math. Syst. Theory, 10 (1976/77), no. 2, pp. 169–180.
K. Ye and L.-H. Lim, “Algorithms for structured matrix-vector product of optimal bilinear complexity,” Proc. IEEE Inform. Theory Workshop (ITW), 16 (2016), to appear.
K. Ye and L.-H. Lim, “Every matrix is a product of Toeplitz matrices,” Found. Comput. Math., 16 (2016), no. 3, pp. 577–598.
MathSciNet
Article
MATH
Google Scholar