Foundations of Computational Mathematics

, Volume 17, Issue 5, pp 1195–1217 | Cite as

Mathematics of the Genome

Article

Abstract

This work gives a mathematical foundation for bifurcation from a stable equilibrium in the genome. We construct idealized dynamics associated with the genome. For this dynamics, we investigate the two main bifurcations from a stable equilibrium. Finally, we give mathematical proofs of existence and points of bifurcation for the repressilator and the toggle gene circuits.

Keywords

Genome dynamics Gene networks Pitchfork bifurcation  Hopf bifurcation 

Mathematics Subject Classification

37G15 92D10 

Notes

Acknowledgments

We would like to thank Yan Jun, Lu Zhang, Lindsey Muir, Geoff Patterson, Xin Guo, Anthony Bloch, an anonymous referee and especially Mike Shub for helpful discussions. We extend thanks to James Gimlett and Srikanta Kumar at Defense Advanced Research Projects Agency for support and encouragement.

References

  1. 1.
    J. Monod, F. Jacob. General conclusions: Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26 (1961), 389-401.CrossRefGoogle Scholar
  2. 2.
    S. Kauffman, W. S. McCulloch. Random Nets of Formal Genes. Quarterly Progress Report 34. Research Laboratory of Electronics, Massachusetts Institute of Technology, 1967.Google Scholar
  3. 3.
    S. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22 (1969), 437-467.MathSciNetCrossRefGoogle Scholar
  4. 4.
    L. Glass. Classification of biological networks by their qualitative dynamics. Journal of Theoretical Biology, 54 (1975), 85-107.CrossRefGoogle Scholar
  5. 5.
    L. Glass, J. S. Pasternack. Stable oscillations in mathematical models of biological control systems. Journal of Mathematical Biology, 6 (1978), 207-223.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    S. P. Hastings, J. Tyson, D. Webster. Existence of Periodic Solutions for Negative Feedback Cellular Control Systems. Journal of Differential Equations, 25 (1977), 39-64.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    J. Mallet-Paret, H. L. Smith. The Poincare-Bendixson theorem for monotone cyclic feedback systems. Journal of Dynamics and Differential Equations, 2 (1990), 367-421.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    T. Gedeon, K. Mischaikow. Structure of the global attractor of cyclic feedback systems. Journal of Dynamics and Differential Equations, 7 (1995), 141-190.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    P. Bürgisser, F. Cucker. Condition: The Geometry ofNumerical Algorithms. Springer Verlag 2013.Google Scholar
  10. 10.
    U. Alon. An Introduction to Systems Biology: Design Principles of Biological Circuits. Boca Raton, FL: Chapman & Hall/CRC Press, 2006.MATHGoogle Scholar
  11. 11.
    F. R. Chung. Spectral graph theory, Vol 92, American MathematicalSoc., 1997.Google Scholar
  12. 12.
    R. Edwards, L. Glass. Dynamics in Genetic Networks. The American Mathematical Monthly. 121 (2014),793-809.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    I. Rajapakse, M. Groudine. On Emerging Nuclear order. Journal of Cell Biology, 192 (2011), 711-721.CrossRefGoogle Scholar
  14. 14.
    M. W. Hirsch, S. Smale. Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, 1974.Google Scholar
  15. 15.
    S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos. Springer-Verlag, New York, second edition, 2003MATHGoogle Scholar
  16. 16.
    J. Guckenheimer, P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 2002.MATHGoogle Scholar
  17. 17.
    Y. A. Kuznetsov. Elements of applied bifurcation theory. Springer-Verlag, New York, second edition, 1998.MATHGoogle Scholar
  18. 18.
    A. I. Mees, L. O. Chua. The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems. IEEE Trans. Circ. Syst., 26 (1979), 235–5.Google Scholar
  19. 19.
    J. E. Marsden, M. McCracken. The Hopf Bifurcation and Its Applications. Applied Mathematical Sciences. Vol.19. Springer-Verlag , New York, NY, 1976.CrossRefMATHGoogle Scholar
  20. 20.
    E. Hopf. Abzweigung einer periodischen Losung von einer stationaren Losung eines Di erentialsystems. Ber Math Phys Kl Sachs Akad Wiss Leipzig, 94 (1942), 1-22.Google Scholar
  21. 21.
    J. C. Alexander, J. A. Yorke. Global bifurcations of periodic orbits. American Journal of Mathematics, 100 (1978), 263-292.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    J. Mallet-Paret, J. A. Yorke. Snakes: Oriented families of periodic orbits, their sources, sinks, and continuation. Journal of Differential Equations, 43 (1982), 419- 450.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    T. S. Gardner, C. R. Cantor, J. J. Collins. Construction of a genetic toggle switch in Escherichia coli. Nature, 403 (2000), 339-342.CrossRefGoogle Scholar
  24. 24.
    S. P. Ellner, J. Guckenheimer. Dynamics models in biology. Princeton University Press, Princeton, New Jersey, 2006.MATHGoogle Scholar
  25. 25.
    M. B. Elowitz, S. Leibler. A synthetic oscillatory network of transcriptional regulators. Nature, 403 (2000), 335-338.CrossRefGoogle Scholar
  26. 26.
    O. Buse, A. Kuznetsov, R. Pérez. Existence of limit cycles in the repressilator equation. Int. J. Bifurcation Chaos, 19 (2009), 4097-4106.MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    V. Guillemin, A. Pollack. Differential Topology. Prentice-Hall, 1974.Google Scholar

Copyright information

© SFoCM 2016

Authors and Affiliations

  1. 1.University of MichiganAnn ArborUSA
  2. 2.City University of Hong KongKowloonHong Kong
  3. 3.Mathematics, University of CaliforniaBerkeleyUSA

Personalised recommendations