Skip to main content
Log in

Plethysm and Lattice Point Counting

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We apply lattice point counting methods to compute the multiplicities in the plethysm of \(\textit{GL}(n)\). Our approach gives insight into the asymptotic growth of the plethysm and makes the problem amenable to computer algebra. We prove an old conjecture of Howe on the leading term of plethysm. For any partition \(\mu \) of 3, 4, or 5, we obtain an explicit formula in \(\lambda \) and k for the multiplicity of \(S^\lambda \) in \(S^\mu (S^k)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelmalek Abdesselam and Jaydeep Chipalkatti, Brill–Gordan loci, transvectants and an analogue of the Foulkes conjecture, Advances in Mathematics 208 (2007), no. 2, 491–520.

    Article  MathSciNet  MATH  Google Scholar 

  2. Yoshio Agaoka, Decomposition formulas of the plethysm \(\{m\}\otimes \{\mu \}\), Hiroshima University, 2002.

  3. M Welleda Baldoni, Matthias Beck, Charles Cochet, and Michèle Vergne, Volume computation for polytopes and partition functions for classical root systems, Discrete & Computational Geometry 35 (2006), no. 4, 551–595.

    Google Scholar 

  4. Michel L Balinski and Fred J Rispoli, Signature classes of transportation polytopes, Mathematical programming 60 (1993), no. 1-3, 127–144.

    Google Scholar 

  5. Leonid Bedratyuk, Analogue of the Cayley–Sylvester formula and the Poincaré series for the algebra of invariants of n-ary form, Linear and Multilinear Algebra 59 (2011), no. 11, 1189–1199.

    Article  MathSciNet  MATH  Google Scholar 

  6. Arkady D Berenstein and Andrei V Zelevinsky, Triple multiplicities for \(sl(r+1)\) and the spectrum of the exterior algebra of the adjoint representation, Journal of Algebraic Combinatorics 1 (1992), no. 1, 7–22.

    Article  MathSciNet  Google Scholar 

  7. Ethan D Bolker, Transportation polytopes, Journal of Combinatorial Theory, Series B 13 (1972), no. 3, 251–262.

    Article  MathSciNet  MATH  Google Scholar 

  8. Emmanuel Briand, Rosa Orellana, and Mercedes Rosas, Quasipolynomial formulas for the Kronecker coefficients indexed by two two–row shapes, DMTCS Proceedings (2009), no. 01, 241–252.

  9. Emmanuel Briand, Rosa Orellana, and Mercedes Rosas, Reduced Kronecker coefficients and counter–examples to Mulmuley’s strong saturation conjecture SH, Computational Complexity 18 (2009), no. 4, 577–600.

    Article  MathSciNet  MATH  Google Scholar 

  10. Emmanuel Briand, Rosa Orellana, and Mercedes Rosas, The stability of the Kronecker product of Schur functions, Journal of Algebra 331 (2011), no. 1, 11–27.

    Article  MathSciNet  MATH  Google Scholar 

  11. Michel Brion, Stable properties of plethysm: on two conjectures of Foulkes, Manuscripta Mathematica 80 (1993), no. 1, 347–371.

    Article  MathSciNet  MATH  Google Scholar 

  12. Michel Brion and Michèle Vergne, Residue formulae, vector partition functions and lattice points in rational polytopes, Journal of the American Mathematical Society 10 (1997), no. 4, 797–833.

    Article  MathSciNet  MATH  Google Scholar 

  13. Winfried Bruns, Aldo Conca, and Matteo Varbaro, Relations between the minors of a generic matrix, Advances in Mathematics 244 (2013), 171–206.

    Article  MathSciNet  MATH  Google Scholar 

  14. Peter Bürgisser, Matthias Christandl, and Christian Ikenmeyer, Even partitions in plethysms, J. Algebra 328 (2011), 322–329.

    Article  MathSciNet  MATH  Google Scholar 

  15. Peter Bürgisser, Joseph M Landsberg, Laurent Manivel, and Jerzy Weyman, An overview of mathematical issues arising in the geometric complexity theory approach to \(P\ne \) NP, SIAM Journal on Computing 40 (2011), no. 4, 1179–1209.

    Article  MathSciNet  Google Scholar 

  16. Christophe Carré, Plethysm of elementary functions, Bayreuther Mathematische Schriften (1990), no. 31, 1–18.

  17. Christophe Carre and Jean-Yves Thibon, Plethysm and vertex operators, Advances in Applied Mathematics 13 (1992), no. 4, 390–403.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. M. Chen, A. M. Garsia, and J. Remmel, Algorithms for plethysm, Combinatorics and algebra (Boulder, Colo., 1983), Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 109–153.

  19. Matthias Christandl, Brent Doran, Stavros Kousidis, and Michael Walter, Eigenvalue distributions of reduced density matrices, Communications in Mathematical Physics 332 (2014), no. 1, 1–52.

    Article  MathSciNet  MATH  Google Scholar 

  20. Matthias Christandl, Brent Doran, and Michael Walter, Computing multiplicities of lie group representations, Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, IEEE, 2012, pp. 639–648.

  21. Jesús A De Loera and Edward D Kim, Combinatorics and geometry on transportation polytopes: An update, Discrete Geometry and Algebraic Combinatorics 625 (2014), 37.

  22. Suzie C. Dent and Johannes Siemons, On a conjecture of Foulkes, Journal of Algebra 226 (2000), no. 1, 236 – 249.

    Google Scholar 

  23. D. G. Duncan, On D. E. Littlewood’s algebra of \(S\) -functions, Canadian J. Math. 4 (1952), 504–512.

  24. H. O. Foulkes, Plethysm of \(S\) -functions, Philos. Trans. Roy. Soc. London. Ser. A. 246 (1954), 555–591.

    Article  MathSciNet  MATH  Google Scholar 

  25. Mihai Fulger and Xin Zhou, Schur asymptotics of Veronese syzygies, Mathematische Annalen 362 (2015), no. 1–2, 529–540.

    Article  MathSciNet  MATH  Google Scholar 

  26. William Fulton and Joe Harris, Representation theory. a first course, Springer, Berlin, 1991.

  27. Roger Howe, \((GL_n,GL_m)\) -duality and symmetric plethysm, Proc. Indian Acad. Sci. Math. Sci. 97 (1987), no. 1-3, 85–109.

    Article  MathSciNet  Google Scholar 

  28. Thomas Kahle and Mateusz Michalek, Obstructions to combinatorial formulas for plethysm, preprint, arXiv:1507.07131 (2015).

  29. Ronald King and Trevor Welsh, Some remarks on characters of symmetric groups, Schur functions, Littlewood-Richardson and Kronecker coefficients, work in progress http://congreso.us.es/enredo2009/Workshop_files/Sevilla_King.pdf.

  30. Victor Klee and Christoph Witzgall, Facets and vertices of transportation polytopes, Mathematics of the decision sciences 3 (1968), 257–282.

    MathSciNet  Google Scholar 

  31. Alexander A Klyachko, Stable bundles, representation theory and hermitian operators, Selecta Mathematica, New Series 4 (1998), no. 3, 419–445.

    Google Scholar 

  32. Allen Knutson and Terence Tao, The honeycomb model of \(GL_n({\mathbb{C}})\) tensor products I: Proof of the saturation conjecture, Journal of the American Mathematical Society 12 (1999), no. 4, 1055–1090.

  33. Allen Knutson, Terence Tao, and Christopher Woodward, The honeycomb model of \(GL_n({\mathbb{C}})\) tensor products II: Puzzles determine facets of the littlewood-richardson cone, Journal of the American Mathematical Society 17 (2004), no. 1, 19–48.

  34. Joseph M Landsberg, Geometric complexity theory: an introduction for geometers, Annali dell’universita’di Ferrara 61 (2015), no. 1, 65–117.

  35. Dudley E. Littlewood, Polynomial concomitants and invariant matrices, Journal of the London Mathematical Society 1 (1936), no. 1, 49–55.

    Google Scholar 

  36. Fu Liu, Perturbation of transportation polytopes, Journal of Combinatorial Theory, Series A 120 (2013), no. 7, 1539–1561.

    Article  MathSciNet  MATH  Google Scholar 

  37. Nicholas A Loehr and Jeffrey B Remmel, A computational and combinatorial exposé of plethystic calculus, Journal of Algebraic Combinatorics 33 (2011), no. 2, 163–198.

    Article  MathSciNet  Google Scholar 

  38. Ian Grant Macdonald, Symmetric functions and hall polynomials,Oxford university press, 1998.

  39. Laurent Manivel, Gaussian maps and plethysm, Lecture Notes in Pure and Applied Mathematics (1998), 91–118.

  40. Laurent Manivel, On the asymptotics of Kronecker coefficients, preprint, arXiv:1411.3498 (2014).

  41. Laurent Manivel and Mateusz Michałek, Effective constructions in plethysms and Weintraub’s conjecture, Algebras and Representation Theory (2012), 1–11.

  42. Laurent Manivel and Mateusz Michałek, Secants of minuscule and cominuscule minimal orbits, Linear Algebra and its Applications 481 (2015), 288–312.

    Article  MathSciNet  MATH  Google Scholar 

  43. Tom McKay, On plethysm conjectures of Stanley and Foulkes, Journal of Algebra 319 (2008), no. 5, 2050 – 2071.

    Article  MathSciNet  MATH  Google Scholar 

  44. Eckhard Meinrenken, On Riemann-Roch formulas for multiplicities, Journal of the American Mathematical Society 9 (1996), 373–390.

    Article  MathSciNet  MATH  Google Scholar 

  45. Eckhard Meinrenken and Reyer Sjamaar, Singular reduction and quantization, Topology 38 (1999), no. 4, 699–762.

    Article  MathSciNet  MATH  Google Scholar 

  46. Ketan D Mulmuley and Milind Sohoni, Geometric complexity theory I: An approach to the P vs. NP and related problems, SIAM Journal on Computing 31 (2001), no. 2, 496–526.

    Google Scholar 

  47. S. P. O. Plunkett, On the plethysm of \(S\) -functions, Canad. J. Math. 24 (1972), 541–552.

    Article  MathSciNet  MATH  Google Scholar 

  48. Claudiu Raicu, Secant varieties of Segre-Veronese varieties, Algebra and Number Theory 6 (2012), no. 8, 1817–1868.

    Article  MathSciNet  MATH  Google Scholar 

  49. David B Rush, Cyclic sieving and plethysm coefficients, preprint, arXiv:1408.6484 (2014).

  50. Reyer Sjamaar, Holomorphic slices, symplectic reduction and multiplicities of representations, Annals of Mathematics (1995), 87–129.

  51. Richard P. Stanley, Positivity problems and conjectures in algebraic combinatorics, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 295–319.

    Google Scholar 

  52. R. M. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math. 64 (1942), 371–388.

    Article  MathSciNet  MATH  Google Scholar 

  53. Marc A. A. van Leeuwen, Arjeh M. Cohen, and Bert Lisser, LiE: A package for lie group computations, CAN (Computer Algebra Nederland), 1992.

  54. Sven Verdoolaege, isl: An integer set library for the polyhedral model, Mathematical Software—ICMS 2010 (Komei Fukuda, Joris Hoeven, Michael Joswig, and Nobuki Takayama, eds.), Lecture Notes in Computer Science, vol. 6327, Springer, 2010, pp. 299–302.

  55. Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and Maurice Bruynooghe, Counting integer points in parametric polytopes using Barvinok’s rational functions, Algorithmica 48 (2007), no. 1, 37–66.

    Article  MathSciNet  MATH  Google Scholar 

  56. Steven H. Weintraub, Some observations on plethysms, Journal of Algebra 129 (1990), no. 1, 103–114.

    MathSciNet  Google Scholar 

  57. Jerzy Weyman, Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics, vol. 149, Cambridge University Press, Cambridge, 2003.

    Book  Google Scholar 

  58. Mei Yang, An algorithm for computing plethysm coefficients, Discrete Mathematics 180 (1998), no. 1, 391–402.

    Article  MathSciNet  MATH  Google Scholar 

  59. Mei Yang, The first term in the expansion of plethysm of Schur functions, Discrete Mathematics 246 (2002), no. 1, 331–341.

    Article  MathSciNet  MATH  Google Scholar 

  60. F. L. Zak, Tangents and secants of algebraic varieties, Translations of Mathematical Monographs, vol. 127, American Mathematical Society, Providence, RI, 1993, Translated from the Russian manuscript by the author.

Download references

Acknowledgments

The authors would like to thank Sven Verdoolaege for his prompt responses to issues raised on the isl -mailing list. The second author would like to thank Laurent Manivel for introducing him to the subject of plethysm. After the first posting of this paper on the arXiv Matthias Christandl, Laurent Manivel, and Michèle Vergne provided very insightful comments on how to apply Meinrenken-Sjamaar theory to the plethysm. We would like to thank them also for their suggestions on how to improve the paper. This project started, while Michałek was an Oberwolfach Leibniz fellow and invited Kahle for work at MFO. The project was finished at Freie Universität Berlin during Michałek’s DAAD PRIME fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kahle.

Additional information

Communicated by Peter Bürgisser.

Mateusz Michałek is supported by Polish National Science Center Grant No. 2012/05/D/ST1/01063.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahle, T., Michałek, M. Plethysm and Lattice Point Counting. Found Comput Math 16, 1241–1261 (2016). https://doi.org/10.1007/s10208-015-9275-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-015-9275-7

Keywords

Mathematics Subject Classification

Navigation