Foundations of Computational Mathematics

, Volume 16, Issue 1, pp 69–97 | Cite as

Sign Conditions for Injectivity of Generalized Polynomial Maps with Applications to Chemical Reaction Networks and Real Algebraic Geometry

  • Stefan Müller
  • Elisenda Feliu
  • Georg Regensburger
  • Carsten Conradi
  • Anne Shiu
  • Alicia Dickenstein


We give necessary and sufficient conditions in terms of sign vectors for the injectivity of families of polynomial maps with arbitrary real exponents defined on the positive orthant. Our work relates and extends existing injectivity conditions expressed in terms of Jacobian matrices and determinants. In the context of chemical reaction networks with power-law kinetics, our results can be used to preclude as well as to guarantee multiple positive steady states. In the context of real algebraic geometry, our work recognizes a prior result of Craciun, Garcia-Puente, and Sottile, together with work of two of the authors, as the first partial multivariate generalization of the classical Descartes’ rule, which bounds the number of positive real roots of a univariate real polynomial in terms of the number of sign variations of its coefficients.


Sign vector Restricted injectivity Power-law kinetics Descartes’ rule of signs Oriented matroid 

Mathematics Subject Classification

13P15 12D10 70K42 37C10 80A30 52C40 



This project began during the Dagstuhl Seminar on “Symbolic methods for chemical reaction networks” held in November 2012 at Schloss Dagstuhl, Germany. The authors also benefited from discussions during the AIM workshop on “Mathematical problems arising from biochemical reaction networks” held in March 2013, in Palo Alto. EF was supported by a postdoctoral grant “Beatriu de Pinós” from the Generalitat de Catalunya and the Spanish research project MTM2012-38122-C03-01. CC was supported by BMBF grant Virtual Liver (FKZ 0315744) and the research focus dynamical systems of the state Saxony-Anhalt. AS was supported by the NSF (DMS-1004380 and DMS-1312473). AD was partially supported by UBACYT 20020130100207BA, CONICET PIP 11220110100580, and ANPCyT PICT-2013-1110, Argentina. The authors thank an anonymous referee for helpful comments.


  1. 1.
    E. Althaus and D. Dumitriu, Certifying feasibility and objective value of linear programs, Oper. Res. Lett. 40 (2012), 292–297.CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    R. M. Anderson and R. M. May, Infectious diseases of humans: Dynamics and control, Oxford University Press, Oxford, 1991.Google Scholar
  3. 3.
    D. L. Applegate, W. Cook, S. Dash, and D. G. Espinoza, Exact solutions to linear programming problems, Oper. Res. Lett. 35 (2007), 693–699.Google Scholar
  4. 4.
    D. L. Applegate, W. Cook, S. Dash, and D. G. Espinoza, QSopt_ex (2009). Available online at
  5. 5.
    E. Babson, L. Finschi, and K. Fukuda, Cocircuit graphs and efficient orientation reconstruction in oriented matroids, European J. Combin. 22 (2001), 587–600.Google Scholar
  6. 6.
    M. Banaji and G. Craciun, Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements, Commun. Math. Sci. 7 (2009), 867–900.Google Scholar
  7. 7.
    M. Banaji and G. Craciun, Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems, Adv. Appl. Math. 44 (2010), 168–184.Google Scholar
  8. 8.
    M. Banaji, P. Donnell, and S. Baigent, \(P\) matrix properties, injectivity, and stability in chemical reaction systems, SIAM J. Appl. Math. 67 (2007), 1523–1547.Google Scholar
  9. 9.
    M. Banaji and C. Pantea, Some results on injectivity and multistationarity in chemical reaction networks, Available online at arXiv:1309.6771, 2013.
  10. 10.
    S. Basu, R. Pollack, and M. F. Roy, Algorithms in real algebraic geometry, second ed., Algorithms and Computation in Mathematics, vol. 10, Springer-Verlag, Berlin, 2006, Updated online version available at
  11. 11.
    F. Bihan and A. Dickenstein, Descartes’ rule of signs for polynomial systems supported on circuits, Preprint, 2014.Google Scholar
  12. 12.
    M. W. Birch, Maximum likelihood in three-way contingency tables, J. Roy. Stat. Soc. B Met. 25 (1963), 220–233.MathSciNetzbMATHGoogle Scholar
  13. 13.
    A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler, Oriented matroids, second ed., Encyclopedia Math. Appl., vol. 46, Cambridge University Press, Cambridge, 1999.Google Scholar
  14. 14.
    S. Boyd, S. J. Kim, L. Vandenberghe, and A. Hassibi, A tutorial on geometric programming, Optim. Eng. 8 (2007), 67–127.Google Scholar
  15. 15.
    R. Brualdi and B. Shader, Matrices of sign-solvable linear systems, Cambridge University Press, 1995.CrossRefzbMATHGoogle Scholar
  16. 16.
    S. Chaiken, Oriented matroid pairs, theory and an electric application, Matroid theory (Seattle, WA, 1995), Contemp. Math., vol. 197, Amer. Math. Soc., Providence, RI, 1996, pp. 313–331.Google Scholar
  17. 17.
    C. Conradi and D. Flockerzi, Multistationarity in mass action networks with applications to ERK activation, J. Math. Biol. 65 (2012), 107–156.Google Scholar
  18. 18.
    C. Conradi and D. Flockerzi, Switching in mass action networks based on linear inequalities, SIAM J. Appl. Dyn. Syst. 11 (2012), 110–134.Google Scholar
  19. 19.
    C. Conradi, D. Flockerzi, and J. Raisch, Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space, Math. Biosci. 211 (2008), 105–131.Google Scholar
  20. 20.
    G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks. I. The injectivity property, SIAM J. Appl. Math. 65 (2005), 1526–1546.Google Scholar
  21. 21.
    G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks: extensions to entrapped species models, Systems Biology, IEE Proceedings 153 (2006), 179–186.Google Scholar
  22. 22.
    G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks. II. The species-reaction graph, SIAM J. Appl. Math. 66 (2006), 1321–1338.Google Scholar
  23. 23.
    G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks: semiopen mass action systems, SIAM J. Appl. Math. 70 (2010), 1859–1877.Google Scholar
  24. 24.
    G. Craciun, L. Garcia-Puente, and F. Sottile, Some geometrical aspects of control points for toric patches, Mathematical Methods for Curves and Surfaces (Heidelberg) (M. Dæhlen, M. S. Floater, T. Lyche, J. L. Merrien, K. Morken, and L. L. Schumaker, eds.), Lecture Notes in Computer Science, vol. 5862, Springer, 2010, pp. 111–135.Google Scholar
  25. 25.
    G. Craciun, J. W. Helton, and R. J. Williams, Homotopy methods for counting reaction network equilibria, Math. Biosci. 216 (2008), 140–149.Google Scholar
  26. 26.
    M. Feinberg, Complex balancing in general kinetic systems, Arch. Rational Mech. Anal. 49 (1972/73), 187–194.Google Scholar
  27. 27.
    M. Feinberg, Lectures on chemical reaction networks, Available online at, (1980).
  28. 28.
    M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors–I. The deficiency zero and deficiency one theorems, Chem. Eng. Sci. 42 (1987), 2229–2268.Google Scholar
  29. 29.
    M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors–II. Multiple steady states for networks of deficiency one, Chem. Eng. Sci. 43 (1988), 1–25.Google Scholar
  30. 30.
    M. Feinberg, The existence and uniqueness of steady states for a class of chemical reaction networks, Arch. Rational Mech. Anal. 132 (1995), 311–370.Google Scholar
  31. 31.
    M. Feinberg, Multiple steady states for chemical reaction networks of deficiency one, Arch. Rational Mech. Anal. 132 (1995), 371–406.Google Scholar
  32. 32.
    E. Feliu and C. Wiuf, Preclusion of switch behavior in reaction networks with mass-action kinetics, Appl. Math. Comput. 219 (2012), 1449–1467.CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    E. Feliu and C. Wiuf, A computational method to preclude multistationarity in networks of interacting species, Bioinformatics 29 (2013), 2327–2334.CrossRefGoogle Scholar
  34. 34.
    D. Gale and H. Nikaidô, The Jacobian matrix and global univalence of mappings, Math. Ann. 159 (1965), 81–93.CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, reprint of the 1994 ed., Boston, MA: Birkhäuser, 2008.Google Scholar
  36. 36.
    A. M. Gleixner, D. E. Steffy, and K. Wolter, Improving the accuracy of linear programming solvers with iterative refinement, Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation (ISSAC ’12) (New York, NY, USA), ACM, 2012, pp. 187–194.Google Scholar
  37. 37.
    G. Gnacadja, A Jacobian criterion for the simultaneous injectivity on positive variables of linearly parameterized polynomials maps, Linear Algebra Appl. 437 (2012), 612–622.CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    C. M. Guldberg and P. Waage, Studies Concerning Affinity, C. M. Forhandlinger: Videnskabs-Selskabet i Christiana 35 (1864).Google Scholar
  39. 39.
    J. Gunawardena, Chemical reaction network theory for in-silico biologists, Available online at, 2003.
  40. 40.
    J. W. Helton, V. Katsnelson, and I. Klep, Sign patterns for chemical reaction networks, J. Math. Chem. 47 (2010), 403–429.Google Scholar
  41. 41.
    J. W. Helton, I. Klep, and R. Gomez, Determinant expansions of signed matrices and of certain Jacobians, SIAM J. Matrix Anal. Appl. 31 (2009), 732–754.Google Scholar
  42. 42.
    K. Holstein, D. Flockerzi, and C. Conradi, Multistationarity in sequential distributed multisite phosphorylation networks, Bull. Math. Biol. 75 (2013), 2028–2058.CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    F. Horn, Necessary and sufficient conditions for complex balancing in chemical kinetics, Arch. Rational Mech. Anal. 49 (1972), 172–186.CrossRefMathSciNetGoogle Scholar
  44. 44.
    F. Horn and R. Jackson, General mass action kinetics, Arch. Ration. Mech. Anal. 47 (1972), 81–116.Google Scholar
  45. 45.
    I. Itenberg and M. F. Roy, Multivariate Descartes’ rule, Beiträge zur Algebra und Geometrie 37 (1996), 337–346.Google Scholar
  46. 46.
    B. Joshi and A. Shiu, Simplifying the Jacobian criterion for precluding multistationarity in chemical reaction networks, SIAM J. Appl. Math. 72 (2012), 857–876.Google Scholar
  47. 47.
    M. Joswig and T. Theobald, Polyhedral and algebraic methods in computational geometry, Universitext, Springer, London, 2013.Google Scholar
  48. 48.
    A. G. Khovanskiĭ, Fewnomials, Translations of Mathematical Monographs, vol. 88, American Mathematical Society, Providence, RI, 1991, Translated from the Russian by Smilka Zdravkovska.Google Scholar
  49. 49.
    V. Klee, R. Ladner, and R. Manber, Signsolvability revisited, Linear Algebra Appl. 59 (1984), 131–157.Google Scholar
  50. 50.
    F. Kubler and K. Schmedders, Tackling multiplicity of equilibria with Gröbner bases, Oper. Res. 58 (2010), 1037–1050.Google Scholar
  51. 51.
    O. L. Mangasarian, Nonlinear programming, Classics in Applied Mathematics, vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994, Corrected reprint of the 1969 original.Google Scholar
  52. 52.
    M. Mincheva and G. Craciun, Multigraph conditions for multistability, oscillations and pattern formation in biochemical reaction networks, Proceedings of the IEEE 96 (2008), 1281–1291.Google Scholar
  53. 53.
    S. Müller and G. Regensburger, Generalized mass action systems: Complex balancing equilibria and sign vectors of the stoichiometric and kinetic-order subspaces, SIAM J. Appl. Math. 72 (2012), 1926–1947.CrossRefMathSciNetzbMATHGoogle Scholar
  54. 54.
    S. Müller and G. Regensburger, Generalized mass-action systems and positive solutions of polynomial equations with real and symbolic exponents, Computer Algebra in Scientific Computing (V. P. Gerdt, W. Koepf, W. M. Seiler, and E. V. Vorozhtsov, eds.), Lecture Notes in Computer Science, vol. 8660, Springer International Publishing, 2014, pp. 302–323.Google Scholar
  55. 55.
    J. D. Murray, Mathematical biology: I. An introduction, third ed., Interdisciplinary Applied Mathematics, vol. 17, Springer-Verlag, New York, 2002.Google Scholar
  56. 56.
    C. Pantea, H. Koeppl, and G. Craciun, Global injectivity and multiple equilibria in uni- and bi-molecular reaction networks, Discrete Contin. Dyn. Syst. Ser. B 17 (2012), 2153–2170.Google Scholar
  57. 57.
    M. Pérez Millán, A. Dickenstein, A. Shiu, and C. Conradi, Chemical reaction systems with toric steady states, Bull. Math. Biol. 74 (2012), 1027–1065.CrossRefMathSciNetzbMATHGoogle Scholar
  58. 58.
    J. Rambau, TOPCOM: Triangulations of point configurations and oriented matroids, Mathematical software (Beijing, 2002), World Sci. Publ., River Edge, NJ, 2002, pp. 330–340.Google Scholar
  59. 59.
    J. Richter-Gebert and G. M. Ziegler, Oriented matroids, Handbook of discrete and computational geometry, CRC, Boca Raton, FL, 1997, pp. 111–132.Google Scholar
  60. 60.
    M. Safey El Din, RAGLib, Available online at, 2013.
  61. 61.
    I. W. Sandberg and A. N. Willson, Existence and uniqueness of solutions for the equations of nonlinear DC networks, SIAM J. Appl. Math. 22 (1972), 173–186.Google Scholar
  62. 62.
    M. A. Savageau, Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions, J. Theor. Biol. 25 (1969), 365–369.CrossRefGoogle Scholar
  63. 63.
    M. A. Savageau and E. O. Voit, Recasting nonlinear differential equations as S-systems: a canonical nonlinear form, Math. Biosci. 87 (1987), 83–115.Google Scholar
  64. 64.
    A. Schrijver, Theory of linear and integer programming, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons Ltd., Chichester, 1986, A Wiley-Interscience Publication.Google Scholar
  65. 65.
    G. Shinar and M. Feinberg, Concordant chemical reaction networks, Math. Biosci. 240 (2012), 92–113.Google Scholar
  66. 66.
    G. Shinar and M. Feinberg, Concordant chemical reaction networks and the species-reaction graph, Math. Biosci. 241 (2013), 1–23.Google Scholar
  67. 67.
    A. J. Sommese and C. W. Wampler, II, The numerical solution of systems of polynomials arising in engineering and science, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.Google Scholar
  68. 68.
    F. Sottile and C. Zhu, Injectivity of 2D toric Bézier patches, Proceedings of 12th International Conference on Computer-Aided Design and Computer Graphics (Jinan, China) (R. Martin, H. Suzuki, and C. Tu, eds.), IEEE CPS, 2011, pp. 235–238.Google Scholar
  69. 69.
    F. Sottile, Real solutions to equations from geometry, University Lecture Series, vol. 57, American Mathematical Society, Providence, RI, 2011.Google Scholar
  70. 70.
    W. A. Stein et al., Sage Mathematics Software, Available online at, 2013.
  71. 71.
    D. J. Struik (ed.), A source book in mathematics, 1200-1800, Source Books in the History of the Sciences. Cambridge, Mass.: Harvard University Press, XIV, 427 p., 1969.Google Scholar
  72. 72.
    M. Uhr, Structural analysis of inference problems arising in systems biology, Ph.D. thesis, ETH Zurich, 2012.Google Scholar
  73. 73.
    C. Wiuf and E. Feliu, Power-law kinetics and determinant criteria for the preclusion of multistationarity in networks of interacting species, SIAM J. Appl. Dyn. Syst. 12 (2013), 1685–1721.CrossRefMathSciNetzbMATHGoogle Scholar
  74. 74.
    G. M. Ziegler, Lectures on polytopes, Springer-Verlag, New York, 1995.CrossRefzbMATHGoogle Scholar

Copyright information

© SFoCM 2015

Authors and Affiliations

  • Stefan Müller
    • 1
  • Elisenda Feliu
    • 2
  • Georg Regensburger
    • 1
  • Carsten Conradi
    • 3
  • Anne Shiu
    • 4
  • Alicia Dickenstein
    • 5
  1. 1.Johann Radon Institute for Computational and Applied MathematicsAustrian Academy of SciencesLinzAustria
  2. 2.Department of Mathematical SciencesUniversity of CopenhagenCopenhagenDenmark
  3. 3.Max-Planck-Institut Dynamik komplexer technischer SystemeMagdeburgGermany
  4. 4.Department of MathematicsTexas A&M UniversityCollege StationUSA
  5. 5.Dto. de Matemática, FCENUniversidad de Buenos Aires, and IMAS (UBA-CONICET)Buenos AiresArgentina

Personalised recommendations