P. Absil, R. Mahony, and R. Sepulchre. Optimization algorithmson matrix manifolds. Princeton University Press, 2009.
F. Alouges. A new algorithm for computing liquid crystal stableconfigurations: the harmonic mapping case. SIAM J. Numer.Anal., 34(5):1708–1726, 1997.
MATH
MathSciNet
Article
Google Scholar
L. Ambrosio, N. Gigli, andG. Savaré. Gradient Flows in Metric Spaces and in the Spaceof Probability Measures. Birkhäuser, 2008.
D. Amsallem and C. Farhat. An online method for interpolating linearparametric reduced-order models. SIAM J. Sci. Comput.,33(5):2169–2198, 2011.
MATH
MathSciNet
Article
Google Scholar
M. Ara. Geometry of \(F\)-harmonic maps. Kodai Math. J., 22(2):243–263, 1999.
MATH
MathSciNet
Article
Google Scholar
D. Bao, S.-S. Chern, and Z. Shen. An introduction to Riemann-Finsler geometry, volume 200. Springer, 2000.
S. Bartels. Stability and convergence of finite-element approximation schemes for harmonic maps. SIAM J. Numer. Anal., 43(1):220–238, 2005.
MATH
MathSciNet
Article
Google Scholar
S. Bartels. Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces. Math. Comput., 79(271):1263–1301, 2010.
MATH
MathSciNet
Article
Google Scholar
S. Bartels and A. Prohl. Constraint preserving implicit finite element discretization of harmonic map flow into spheres. Math. Comput., 76(260):1847–1859, 2007.
MATH
MathSciNet
Article
Google Scholar
S. Bartels and A. Raisch. Simulation of q-tensor fields with constant orientational order parameter in the theory of uniaxial nematic liquid crystals. In Singular Phenomena and Scaling in Mathematical Models, pages 383–412. Springer, 2014.
H. Brezis. The interplay between analysis and topology in some nonlinear pde problems. Bulletin of the American Mathematical Society, 40(2):179–201, 2003.
MATH
MathSciNet
Article
Google Scholar
S. R. Buss and J. P. Fillmore. Spherical averages and applications to spherical splines and interpolation. ACM T. Graphic., 20:95–126, 2001.
Article
Google Scholar
J. Céa. Approximation variationnelle des problemes aux limites. Ann. I. Fourier (Grenoble), 14(2):345–444, 1964.
MATH
Article
Google Scholar
P. Clément. Approximation by finite element function using local regularization. RAIRO Anal. Numer., 2:77–84, 1975.
Google Scholar
M. Crisfield and G. Jelenić. Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. R. Soc. Lond. A, 455:1125–1147, 1999.
MATH
Article
Google Scholar
M. Do Carmo. Riemannian geometry. Birkhäuser Boston, 1992.
MATH
Book
Google Scholar
N. Dyn, P. Grohs, and J. Wallner. Approximation order of interpolatory nonlinear subdivision schemes. J. Comput. Appl. Math., 233(7):1697–1703, 2010.
MATH
MathSciNet
Article
Google Scholar
J. Eells and J. Sampson. Harmonic mappings of Riemannian manifolds. Am. J. Math., 86(1):109–160, 1964.
MATH
MathSciNet
Article
Google Scholar
J. Eels and L. Lemaire. A report on harmonic maps. B. Lond. Math. Soc., 10(1):1–68, 1978.
Article
Google Scholar
H. I. Eliasson. Geometry of manifolds of maps. J. Differ. Geom., 1:169–194, 1967.
MATH
MathSciNet
Google Scholar
A. Fardoun and A. Ratto. Harmonic maps with potential. Calc. Var. Partial Dif., 5(2):183–197, 1997.
MATH
MathSciNet
Article
Google Scholar
P. T. Fletcher and S. Joshi. Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process., 87(2):250–262, 2007.
MATH
Article
Google Scholar
P. Grohs. Smoothness equivalence properties of univariate subdivision schemes and their projection analogues. Numer. Math., 113(2):163–180, 2009.
MATH
MathSciNet
Article
Google Scholar
P. Grohs. Approximation order from stability for nonlinear subdivision schemes. J. Approx. Theory, 162(5):1085–1094, 2010a.
MATH
MathSciNet
Article
Google Scholar
P. Grohs. A general proximity analysis of nonlinear subdivision schemes. SIAM J. Math. Anal., 42(2):729–750, 2010b.
MATH
MathSciNet
Article
Google Scholar
P. Grohs. Geometric multiscale decompositions of dynamic low-rank matrices. Comput. Aided Geom. D., 30:805–826, 2013a.
MATH
MathSciNet
Article
Google Scholar
P. Grohs. Quasi-interpolation in Riemannian manifolds. IMA J. Numer. Anal., 33(3):849–874, 2013b.
MATH
MathSciNet
Article
Google Scholar
P. Grohs and M. Sprecher. Projection-based quasiinterpolation in manifolds. Technical Report 2013–23, Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2013. http://www.sam.math.ethz.ch/sam_reports/reports_final/reports2013/2013-23.pdf.
P. Grohs and J. Wallner. Interpolatory wavelets for manifold-valued data. Appl. Comput. Harmon. A., 27(3):325–333, 2009.
MATH
MathSciNet
Article
Google Scholar
P. Hajlasz. Sobolev mappings between manifolds and metric spaces. In Sobolev Spaces In Mathematics I, volume 8 of International Mathematical Series, pages 185–222. Springer, 2009.
F. Hang and F. Lin. Topology of Sobolev mappings, II. Acta Math., 191(1):55–107, 2003.
MATH
MathSciNet
Article
Google Scholar
R. Hardt, D. Kinderlehrer, and F. Lin. Existence and partial regularity of static liquid crystal configurations. Commun. Math. Phys., 105(4):547–570, 1986.
MATH
MathSciNet
Article
Google Scholar
F. Hélein. Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne. C. R. Acad. Sci. Paris, 312(1), 1991.
M. Hofer and H. Pottmann. Energy-minimizing splines in manifolds. In ACM Transactions on Graphics (TOG), volume 23, pages 284–293. ACM, 2004.
V. Ivancevic. Symplectic rotational geometry in human biomechanics. SIAM rev., 46(3):455–474, 2004.
MATH
MathSciNet
Article
Google Scholar
W. Jäger and H. Kaul. Uniqueness and stability of harmonic maps and their Jacobi fields. Manuscripta Math., 28(1):269–291, 1979.
J. Jost. Riemannian geometry and geometric analysis. Springer, 2011.
H. Karcher. Mollifier smoothing and Riemannian center of mass. Commun. Pur. Appl. Math., 30:509–541, 1977.
MATH
MathSciNet
Article
Google Scholar
N. J. Korevaar and R. M. Schoen. Sobolev spaces and harmonic maps for metric space targets. Commun. Anal. Geom., 1(4):561–659, 1993.
MATH
MathSciNet
Google Scholar
S.-Y. Lin and M. Luskin. Relaxation methods for liquid crystal problems. SIAM J. Numer. Anal., 26(6):1310–1324, 1989.
MATH
MathSciNet
Article
Google Scholar
M. Moakher. Means and averaging in the group of rotations. SIAM J. Matrix Anal. Appl., 24(1):1–16, 2002.
MATH
MathSciNet
Article
Google Scholar
W. Müller.Numerische Analyse und Parallele Simulation von nichtlinearen Cosserat-Modellen. PhD thesis, Karlsruher Institut für Technologie, 2009.
I. Münch. Ein geometrisch und materiell nichtlineares Cosserat-Model – Theorie, Numerik und Anwendungsmöglichkeiten. PhD thesis, Universität Karlsruhe, 2007.
I. Münch, P. Neff, and W. Wagner. Transversely isotropic material: nonlinear Cosserat versus classical approach. Continuum Mech. Therm., 23(1):27–34, 2011.
MATH
Article
Google Scholar
I. Münch, W. Wagner, and P. Neff. Theory and FE-analysis for structures with large deformation under magnetic loading. Comput. Mech., 44(1):93–102, 2009.
MATH
MathSciNet
Article
Google Scholar
J. Nash. The imbedding problem for Riemannian manifolds. Annals of Mathematics, 63(1):20–63, 1956.
MATH
MathSciNet
Article
Google Scholar
P. Neff. A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci., 44(8–9):574–594, 2006.
MATH
MathSciNet
Article
Google Scholar
P. Neff. A geometrically exact Cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. Existence of minimizers for zero Cosserat couple modulus. Math. Mod. Meth. Appl. Sci., 17(3):363–392, 2007.
MATH
MathSciNet
Article
Google Scholar
R. S. Palais. Foundations of global non-linear analysis, volume 196. Benjamin New York, 1968.
X. Pennec, P. Fillard, and N. Ayache. A Riemannian framework for tensor computing. Int. J. Comput. Vision, 66(1):41–66, 2006.
MATH
MathSciNet
Article
Google Scholar
I. U. Rahman, I. Drori, V. C. Stodden, D. L. Donoho, and P. Schröder. Multiscale representations for manifold-valued data. Multiscale Model. Sim., 4(4):1201–1232, 2005.
MATH
Article
Google Scholar
T. Rivière. Everywhere discontinuous harmonic maps into spheres. Acta Math., 175(2):197–226, 1995.
MATH
MathSciNet
Article
Google Scholar
T. Runst and W. Sickel. Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, volume 3. Walter de Gruyter, 1996.
O. Sander. Geodesic finite elements for Cosserat rods. Int. J. Num. Meth. Eng., 82(13):1645–1670, 2010.
MATH
MathSciNet
Google Scholar
O. Sander. Geodesic finite elements on simplicial grids. Int. J. Num. Meth. Eng., 92(12):999–1025, 2012.
MathSciNet
Article
Google Scholar
O. Sander. Geodesic finite elements of higher order. IGPM Preprint 356, RWTH Aachen, 2013.
R. Schoen and K. Uhlenbeck. A regularity theory for harmonic maps. J. Differ. Geom., 17(2):307–335, 1982.
MATH
MathSciNet
Google Scholar
R. Schoen and S.-T. Yau. Lectures on Harmonic Maps. International Press of Boston, 1997.
J. Simo and D. Fox. On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization. Comput. Methods Appl. Mech. Engrg., 72:267–304, 1989.
J. Simo, D. Fox, and M. Rifai. On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory. Comput. Methods Appl. Mech. Engrg., 79(1):21–70, 1990.
MATH
MathSciNet
Article
Google Scholar
J. Simo and L. Vu-Quoc. A three-dimensional finite-strain rod model. Part II: Computational aspects. Comput. Methods Appl. Mech. Engrg., 58(1):79–116, 1986.
MATH
Article
Google Scholar
G. Strang. Variational crimes in the finite element method. In The mathematical foundations of the finite element method with applications to partial differential equations, pages 689–710. Univ. Maryland, Academic Press, New York, 1972.
K. Sturm. Probability measures on metric spaces of nonpositive curvature. In Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, volume 338, pages 357–390. Providence, RI: Providence, RI: AMS. Contemp. Math., 2003.
B. Tang, G. Sapiro, and V. Caselles. Diffusion of general data on non-flat manifolds via harmonic maps theory: The direction diffusion case. International Journal of Computer Vision, 36(2):149–161, 2000.
Article
Google Scholar
B. Tang, G. Sapiro, and V. Caselles. Color image enhancement via chromaticity diffusion. IEEE T. Image Process., 10(5):701–707, 2001.
MATH
Article
Google Scholar
D. Tschumperlé and R. Deriche. Diffusion tensor regularization with constraints preservation. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages I-948. IEEE, 2001.
G. Wahba. Spline models for observational data, volume 59. SIAM, 1990.
K. Weinberg and P. Neff. A geometrically exact thin membrane model-investigation of large deformations and wrinkling. Int. J. Num. Meth. Eng., 74(6):871–893, 2008.
MATH
MathSciNet
Article
Google Scholar
A. Weinmann. Interpolatory multiscale representation for functions between manifolds. SIAM J. Math. Anal., 44(1):162–191, 2012.
MATH
MathSciNet
Article
Google Scholar
P. Wriggers and F. Gruttmann. Thin shells with finite rotations formulated in Biot stresses: Theory and finite element formulation. Int. J. Num. Meth. Eng., 36:2049–2071, 1993.
MATH
Article
Google Scholar
G. Xie and T. P.-Y. Yu. Approximation order equivalence properties of manifold-valued data subdivision schemes. IMA J. Numer. Anal., 32(2):687–700, 2012.
MATH
MathSciNet
Article
Google Scholar