Advertisement

Foundations of Computational Mathematics

, Volume 15, Issue 6, pp 1501–1531 | Cite as

Metrics for Generalized Persistence Modules

  • Peter Bubenik
  • Vin de Silva
  • Jonathan Scott
Article

Abstract

We consider the question of defining interleaving metrics on generalized persistence modules over arbitrary preordered sets. Our constructions are functorial, which implies a form of stability for these metrics. We describe a large class of examples, inverse-image persistence modules, which occur whenever a topological space is mapped to a metric space. Several standard theories of persistence and their stability can be described in this framework. This includes the classical case of sublevelset persistent homology. We introduce a distinction between ‘soft’ and ‘hard’ stability theorems. While our treatment is direct and elementary, the approach can be explained abstractly in terms of monoidal functors.

Keywords

Persistent topology Interleaving Stability Sublinear projections Superlinear families Inverse-image persistence 

Mathematics Subject Classification

55U99 68U05 

Notes

Acknowledgments

The first author gratefully acknowledges the support of AFOSR Grant FA9550-13-1-0115. The second author thanks his home institution, Pomona College, for a sabbatical leave of absence in 2013–2014. The sabbatical was partially supported by the Simons Foundation (Grant #267571) and hosted by the Institute for Mathematics and its Applications, University of Minnesota, with funds provided by the National Science Foundation.

References

  1. 1.
    Paul Bendich, Herbert Edelsbrunner, Dmitriy Morozov, and Amit Patel. Homology and robustness of level and interlevel sets. Homology Homotopy Appl., 15(1):51–72, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    S. Biasotti, A. Cerri, P. Frosini, D. Giorgi, and C. Landi. Multidimensional size functions for shape comparison. Journal of Mathematical Imaging and Vision, 32(2):161–179, 2008.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Peter Bubenik and Jonathan A. Scott. Categorification of persistent homology. Discrete & Computational Geometry, 51(3):600–627, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dan Burghelea and Tamal K. Dey. Topological persistence for circle-valued maps. Discrete Comput. Geom., 50(1):69–98, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dan Burghelea and Stefan Haller. Topology of angle valued maps, bar codes and Jordan blocks. arXiv:1303.4328 [math.AT], 2013.
  6. 6.
    Gunnar Carlsson and Vin de Silva. Zigzag persistence. Foundations of Computational Mathematics, 10(4):367–405, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gunnar Carlsson, Vin de Silva, and Dmitriy Morozov. Zigzag persistent homology and real-valued functions. In Proceedings 25th ACM Symposium on Computational Geometry (SoCG), pages 247–256, 2009.Google Scholar
  8. 8.
    Gunnar Carlsson and Afra Zomorodian. The theory of multidimensional persistence. Discrete Comput. Geom., 42(1):71–93, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leo Guibas, and Steve Oudot. Proximity of persistence modules and their diagrams. In Proceedings of the 25th Annual ACM Symposium on Computational Geometry (SoCG), pages 237–246, 2009.Google Scholar
  10. 10.
    Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The structure and stability of persistence modules. arXiv:1207.3674 [math.AT], 2012.
  11. 11.
    David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. Discrete & Computational Geometry, 37(1):103–120, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using Poincaré and Lefschetz duality. Foundations of Computational Mathematics, 2008.Google Scholar
  13. 13.
    David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Dmitriy Morozov. Persistent homology for kernels, images, and cokernels. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1011–1020, Philadelphia, PA, 2009. SIAM.Google Scholar
  14. 14.
    Justin Curry. Sheaves, cosheaves and applications. Thesis, University of Pennsylvania, 2014.Google Scholar
  15. 15.
    Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and simplification. In IEEE Symposium on Foundations of Computer Science, pages 454–463, 2000.Google Scholar
  16. 16.
    Patrizio Frosini. Measuring shape by size functions. In Proceedings of SPIE on Intelligent Robotic Systems, volume 1607, pages 122–133, 1991.Google Scholar
  17. 17.
    Patrizio Frosini. Stable comparison of multidimensional persistent homology groups with torsion. Acta Appl. Math., 124:43–54, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. Continuous lattices and domains, volume 93 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2003.Google Scholar
  19. 19.
    G. M. Kelly. Doctrinal adjunction. In Category Seminar (Proc. Sem., Sydney, 1972/1973), pages 257–280. Lecture Notes in Math., Vol. 420. Springer, Berlin, 1974.Google Scholar
  20. 20.
    F. William Lawvere. Metric spaces, generalized logic, and closed categories [Rend. Sem. Mat. Fis. Milano 43 (1973), 135–166 (1974); MR0352214 (50 #4701)]. Repr. Theory Appl. Categ., 1:1–37, 2002. With an author commentary: Enriched categories in the logic of geometry and analysis.Google Scholar
  21. 21.
    Michael Lesnick. The theory of the interleaving distance on multidimensional persistence modules. arXiv:1106.5305, 2011.
  22. 22.
    Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.Google Scholar
  23. 23.
    Dmitriy Morozov, Kenes Beketayev, and Gunther Weber. Interleaving distance between merge trees. manuscript, 2013.Google Scholar
  24. 24.
    Vanessa Robins. Towards computing homology from finite approximations. Topology Proceedings, 24:503–532, 1999.MathSciNetzbMATHGoogle Scholar
  25. 25.
    Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete and Computational Geometry, 33(2):249–274, 2005.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© SFoCM 2014

Authors and Affiliations

  1. 1.Department of MathematicsCleveland State UniversityClevelandUSA
  2. 2.Department of MathematicsPomona CollegeClaremontUSA

Personalised recommendations