Skip to main content
Log in

Degeneracy Loci and Polynomial Equation Solving

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Let \(V\) be a smooth, equidimensional, quasi-affine variety of dimension \(r\) over \(\mathbb {C}\), and let \(F\) be a \((p\times s)\) matrix of coordinate functions of \(\mathbb {C}[V]\), where \(s\ge p+r\). The pair \((V,F)\) determines a vector bundle \(E\) of rank \(s-p\) over \(W:=\{x\in V \mid \mathrm{rk }F(x)=p\}\). We associate with \((V,F)\) a descending chain of degeneracy loci of \(E\) (the generic polar varieties of \(V\) represent a typical example of this situation). The maximal degree of these degeneracy loci constitutes the essential ingredient for the uniform, bounded-error probabilistic pseudo-polynomial-time algorithm that we will design and that solves a series of computational elimination problems that can be formulated in this framework. We describe applications to polynomial equation solving over the reals and to the computation of a generic fiber of a dominant endomorphism of an affine space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bank, M. Giusti, J. Heintz, L. Lehmann, and L. M. Pardo, Algorithms of intrinsic complexity for point searching in compact real singular hypersurfaces, Found. Comput. Math. 12 (2012), no. 1, 75–122.

  2. B. Bank, M. Giusti, J. Heintz, and G. M. Mbakop, Polar varieties and efficient real elimination, Math. Z. 238 (2001), no. 1, 115–144.

  3. B. Bank, M. Giusti, J. Heintz, and L. M. Pardo, Generalized polar varieties and an efficient real elimination, Kybernetika 40 (2004), no. 5, 519–550.

  4. B. Bank, M. Giusti, J. Heintz, and L. M. Pardo, Generalized polar varieties: geometry and algorithms, J. Complexity 21 (2005), no. 4, 377–412.

  5. B. Bank, M. Giusti, J. Heintz, M. Safey El Din, and É. Schost, On the geometry of polar varieties, Appl. Algebra Eng. Commun. Comput. 21 (2010), no. 1, 33–83.

  6. W. Bruns and U. Vetter, Determinantal rings, Lecture Notes in Mathematics, vol. 1327, Springer Berlin Heidelberg, 1988.

  7. P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic complexity theory, Grundlehren der mathematischen Wissenschaften, vol. 315, Springer Berlin Heidelberg, 1997.

  8. P. Bürgisser and M. Lotz, The complexity of computing the Hilbert polynomial of smooth equidimensional complex projective varieties, Found. Comput.Math. 7 (2007), no. 1, 59–86.

  9. A. Cafure and G. Matera, Fast computation of a rational point of a variety over a finite field, Math. Comp. 75 (2006), no. 256,2049–2085.

  10. M. Demazure, Catastrophes et bifurcations, Ellipses, Paris, 1989.

  11. C. Durvye and G. Lecerf, A concise proof of the Kronecker polynomial system solver from scratch, Expo. Math. 26 (2008), no. 2, 101–139.

  12. J. A. Eagon and M. Hochster, \(R\) -sequences and indeterminates, Quart. J. Math. Oxford Ser. (2) 25 (1974), 61–71.

  13. J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. Ser. A 269 (1962), 188–204.

  14. D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995.

  15. J.-C. Faugère, FGb: A Library for Computing Gröbner Bases, Mathematical Software - ICMS 2010 (K. Fukuda, J. van der Hoeven, M. Joswig, and N. Takayama, eds.), Lecture Notes in Comput. Sci., vol. 6327, Springer-Verlag, 2010, pp. 84–87.

  16. W. Fulton, Intersection theory, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2, Springer-Verlag, Berlin, 1998.

  17. M. Giusti, J. Heintz, K. Hägele, J. E. Morais, L. M. Pardo, and J. L. Montaña, Lower bounds for Diophantine approximations, J. Pure Appl. Algebra 117/118 (1997), 277–317.

  18. M. Giusti, J. Heintz, J. E. Morais, J. Morgenstern, and L. M. Pardo, Straight-line programs in geometric elimination theory, J. Pure Appl. Algebra 124 (1998), no. 1-3, 101–146.

  19. M. Giusti, G. Lecerf, and B. Salvy, A Gröbner free alternative for polynomial system solving, J. Complexity 17 (2001), no. 1, 154–211.

  20. J. Heintz, Definability and fast quantifier elimination in algebraically closed fields, Theoret. Comput. Sci. 24 (1983), no. 3, 239–277.

  21. J. Heintz, G. Matera, and A. Waissbein, On the time-space complexity of geometric elimination procedures, Appl. Algebra Engrg. Comm. Comput. 11 (2001), no. 4, 239–296.

  22. J. Heintz and C.-P. Schnorr, Testing polynomials which are easy to compute, International Symposium on Logic and Algorithmic (Zurich, 1980) (Geneva), Monograph. Enseign. Math., vol. 30, Univ. Genève, 1982, pp. 237–254.

  23. E. Kaltofen and B. D. Saunders, On Wiedemann’s method of solving sparse linear systems, Applied algebra, algebraic algorithms and error-correcting codes (New Orleans, LA, 1991), Lecture Notes in Comput. Sci., vol. 539, Springer, Berlin, 1991, pp. 29–38.

  24. H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986, Translated from the Japanese by M. Reid.

  25. D. Mumford, The red book of varieties and schemes, Lecture Notes in Mathematics, vol. 1358, Springer-Verlag, Berlin, 1988.

  26. R. Piene, Polar classes of singular varieties, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 2, 247–276.

  27. M. Safey El Din, RAGLib (Real Algebraic Geometry Library), Maple (TM) package, from 2007, http://www-polsys.lip6.fr/~safey/RAGLib.

  28. M. Safey El Din and Ph. Trébuchet, Strong bi-homogeneous Bézout theorem and its use in effective real algebraic geometry, Tech. Report 6001, INRIA, 2006, http://hal.inria.fr/inria-00105204.

  29. J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. Assoc. Comput. Mach. 27 (1980), no. 4, 701–717.

  30. I. R. Shafarevich, Basic algebraic geometry. 1, second ed., Springer-Verlag, Berlin, 1994, Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid.

  31. I. R. Shafarevich, Basic algebraic geometry. 2, second ed., Springer-Verlag, Berlin, 1994, Schemes and complex manifolds, Translated from the 1988 Russian edition by Miles Reid.

  32. M. Turrel Bardet, Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie, Ph.D. thesis, Université Paris 6, 2004, http://tel.archives-ouvertes.fr/tel-00449609.

  33. J. van der Hoeven, G. Lecerf, B. Mourain, et al., Mathemagix, from 2002, http://www.mathemagix.org.

  34. W. Vogel, Lectures on results on Bezout’s theorem, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 74, Published for the Tata Institute of Fundamental Research, Bombay, 1984, Notes by D. P. Patil.

  35. R. Zippel, Probabilistic algorithms for sparse polynomials, Symbolic and algebraic computation (EUROSAM ’79, Internat. Sympos., Marseille, 1979), Lecture Notes in Comput. Sci., vol. 72, Springer, Berlin, 1979, pp. 216–226.

Download references

Acknowledgments

The authors wish to thank Antonio Campillo (Valladolid, Spain) for stimulating conversations on the subject of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joos Heintz.

Additional information

Communicated by Teresa Krick and James Renegar.

Dedicated to Mike Shub on the occasion of his 70th birthday.

Research partially supported by the following Argentinian, French and Spanish grants:

CONICET Res 4541-12, PIP 11220090100421 CONICET, UBACYT 20020100100945 and 20020110100063, PICT-2010-0525, Digiteo DIM 2009-36HD “MaGiX” grant of the Région Ile-de-France, ANR-2010-BLAN-0109-04 “LEDA”, MTM2010-16051.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bank, B., Giusti, M., Heintz, J. et al. Degeneracy Loci and Polynomial Equation Solving. Found Comput Math 15, 159–184 (2015). https://doi.org/10.1007/s10208-014-9214-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-014-9214-z

Keywords

Mathematics Subject Classification

Navigation