Foundations of Computational Mathematics

, Volume 13, Issue 4, pp 583–613 | Cite as

On Post-Lie Algebras, Lie–Butcher Series and Moving Frames

Article

Abstract

Pre-Lie (or Vinberg) algebras arise from flat and torsion-free connections on differential manifolds. These algebras have been extensively studied in recent years, both from algebraic operadic points of view and through numerous applications in numerical analysis, control theory, stochastic differential equations and renormalization. Butcher series are formal power series founded on pre-Lie algebras, used in numerical analysis to study geometric properties of flows on Euclidean spaces. Motivated by the analysis of flows on manifolds and homogeneous spaces, we investigate algebras arising from flat connections with constant torsion, leading to the definition of post-Lie algebras, a generalization of pre-Lie algebras. Whereas pre-Lie algebras are intimately associated with Euclidean geometry, post-Lie algebras occur naturally in the differential geometry of homogeneous spaces, and are also closely related to Cartan’s method of moving frames. Lie–Butcher series combine Butcher series with Lie series and are used to analyze flows on manifolds. In this paper we show that Lie–Butcher series are founded on post-Lie algebras. The functorial relations between post-Lie algebras and their enveloping algebras, called D-algebras, are explored. Furthermore, we develop new formulas for computations in free post-Lie algebras and D-algebras, based on recursions in a magma, and we show that Lie–Butcher series are related to invariants of curves described by moving frames.

Keywords

B-series Combinatorial Hopf algebras Connections Homogeneous spaces Lie group integrators Lie–Butcher series Moving frames Post-Lie algebras Post-Lie algebroids Pre-Lie algebras Rooted trees 

Mathematics Subject Classification

65L 53C 16T 

References

  1. 1.
    A.A. Agrachev, R.V. Gamkrelidze, Chronological algebras and nonstationary vector fields, J. Math. Sci. 17(1), 1650–1675 (1981). CrossRefGoogle Scholar
  2. 2.
    H. Berland, Isotropy in geometric integration. PhD thesis, Master’s thesis, Norwegian University of Science and Technology (2002). Google Scholar
  3. 3.
    H. Berland, B. Owren, Algebraic structures on ordered rooted trees and their significance to Lie group integrators, in Group Theory and Numerical Analysis. CRM Proceedings & Lecture Notes, vol. 39 (AMS, Providence, 2005), pp. 49–63. Google Scholar
  4. 4.
    C. Brouder, Runge–Kutta methods and renormalization, Eur. Phys. J. C 12(3), 521–534 (2000). CrossRefGoogle Scholar
  5. 5.
    J.C. Butcher, Coefficients for the study of Runge–Kutta integration processes, J. Aust. Math. Soc. 3(02), 185–201 (1963). MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    J.C. Butcher, An algebraic theory of integration methods, Math. Comput. 26(117), 79–106 (1972). MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    É.E. Cartan, J.A. Schouten, On the geometry of the group-manifold of simple and semi-simple groups. Koninklijke Akademie van Wetenschappen te Amsterdam (1926). Google Scholar
  8. 8.
    A. Cayley, On the theory of the analytical forms called trees, Philos. Mag. Ser. 4 13(85) (1857). Google Scholar
  9. 9.
    E. Celledoni, B. Owren, On the implementation of Lie group methods on the Stiefel manifold, Numer. Algorithms 32(2), 163–183 (2003). MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    F. Chapoton, M. Livernet, Pre-Lie algebras and the rooted trees operad, Int. Math. Res. Not. 2001(8), 395–408 (2001). MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    A. Connes, D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Commun. Math. Phys. 199(1), 203–242 (1998). MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    P.E. Crouch, R. Grossman, Numerical integration of ordinary differential equations on manifolds, J. Nonlinear Sci. 3(1), 1–33 (1993). MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    M. Degeratu, M. Ivan, Linear connections on lie algebroids, in Proceedings of the 5th Conference of Balkan Society of Geometers (BSG, Bucharest, 2006), pp. 44–53. Google Scholar
  14. 14.
    K. Ebrahimi-Fard, D. Manchon, The Magnus expansion, trees and Knuth’s rotation correspondence. arXiv:1203.2878 (2012).
  15. 15.
    M. Fels, P.J. Olver, Moving coframes: I. A practical algorithm, Acta Appl. Math. 51(2), 161–213 (1998). MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Fels, P.J. Olver, Moving coframes: II. Regularization and theoretical foundations, Acta Appl. Math. 55(2), 127–208 (1999). MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    R.B. Gardner, The Method of Equivalence and Its Applications (SIAM, Philadelphia, 1989). MATHCrossRefGoogle Scholar
  18. 18.
    M. Gerstenhaber, The cohomology structure of an associative ring, Ann. Math. 78(2), 267–288 (1963). MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    M. Goze, E. Remm, Lie-admissible algebras and operads, J. Algebra 273(1), 129–152 (2004). MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    R. Grossman, R.G. Larson, Hopf-algebraic structure of families of trees, J. Algebra 126(1), 184–210 (1989). MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    E. Hairer, G. Wanner, On the Butcher group and general multi-value methods, Computing 13(1), 1–15 (1974). MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett, A. Zanna, Lie-group methods, Acta Numer. 9, 215–365 (2000). CrossRefGoogle Scholar
  23. 23.
    N. Jacobson, Lie Algebras (Dover, New York, 1979). Google Scholar
  24. 24.
    S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. 2 (Interscience, New York, 1969). MATHGoogle Scholar
  25. 25.
    D. Lewis, P.J. Olver, Geometric integration algorithms on homogeneous manifolds, Found. Comput. Math. 2(4), 363–392 (2002). MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    D. Lewis, N. Nigam, P.J. Olver, Connections for general group actions, Commun. Contemp. Math. 7, 341–374 (2005). MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    J.L. Loday, M.O. Ronco, Combinatorial Hopf algebras, in Quanta of Maths. Clay Mathematics Proceedings, vol. 11 (2010). Google Scholar
  28. 28.
    O. Loos, Symmetric Spaces: General Theory, vol. 1 (WA Benjamin, 1969). Google Scholar
  29. 29.
    A. Lundervold, H.Z. Munthe-Kaas, Backward error analysis and the substitution law for Lie group integrators, Found. Comput. Math. 1–26 (2011). Google Scholar
  30. 30.
    A. Lundervold, H.Z. Munthe-Kaas, Hopf algebras of formal diffeomorphisms and numerical integration on manifolds, Contemp. Math. 539, 295–324 (2011). MathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Lundervold, H.Z. Munthe-Kaas, On algebraic structures of numerical integration on vector spaces and manifolds, in IRMA Lectures in Mathematics and Theoretical Physics (2013). Google Scholar
  32. 32.
    K.C.H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, vol. 213 (Cambridge University Press, Cambridge, 2005). MATHCrossRefGoogle Scholar
  33. 33.
    E.L. Mansfield, A Practical Guide to the Invariant Calculus (Cambridge University Press, Cambridge, 2010). MATHCrossRefGoogle Scholar
  34. 34.
    H. Munthe-Kaas, Lie–Butcher theory for Runge–Kutta methods, BIT Numer. Math. 35(4), 572–587 (1995). MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    H. Munthe-Kaas, Runge–Kutta methods on Lie groups, BIT Numer. Math. 38(1), 92–111 (1998). MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    H. Munthe-Kaas, High order Runge–Kutta methods on manifolds, Appl. Numer. Math. 29(1), 115–127 (1999). MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    H. Munthe-Kaas, S. Krogstad, On enumeration problems in Lie–Butcher theory, Future Gener. Comput. Syst. 19(7), 1197–1205 (2003). CrossRefGoogle Scholar
  38. 38.
    H. Munthe-Kaas, B. Owren, Computations in a free Lie algebra, Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 357(1754), 957 (1999). MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    H. Munthe-Kaas, W. Wright, On the Hopf algebraic structure of Lie group integrators, Found. Comput. Math. 8(2), 227–257 (2008). MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    H. Munthe-Kaas, A. Zanna, Numerical integration of differential equations on homogeneous manifolds, in Foundations of Computational Mathematics, ed. by F. Cucker, M. Shub (1997). Google Scholar
  41. 41.
    J.C. Novelli, J.Y. Thibon, Parking functions and descent algebras, Ann. Comb. 11(1), 59–68 (2007). MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    P.J. Olver, Equivalence, Invariants, and Symmetry (Cambridge University Press, Cambridge, 1995). MATHCrossRefGoogle Scholar
  43. 43.
    P.J. Olver, A survey of moving frames, Comput. Algebra Geom. Algebra Appl. 105–138 (2005). Google Scholar
  44. 44.
    B. Owren, A. Marthinsen, Runge–Kutta methods adapted to manifolds and based on rigid frames, BIT Numer. Math. 39(1), 116–142 (1999). MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    C. Reutenauer, Free Lie Algebras (Oxford University Press, London, 1993). MATHGoogle Scholar
  46. 46.
    R.W. Sharpe, Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program (Springer, Berlin, 1997). MATHGoogle Scholar
  47. 47.
    N.J.A. Sloane, The On-line Encyclopedia of Integer Sequences. http://oeis.org/A022553.
  48. 48.
    M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. 2, 3rd edn. Publish or Perish (2005). Google Scholar
  49. 49.
    B. Vallette, Homology of generalized partition posets, J. Pure Appl. Algebra 208(2), 699–725 (2007). MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    E.B. Vinberg, The theory of convex homogeneous cones, Trans. Mosc. Math. Soc. 12, 340–403 (1963). MATHGoogle Scholar
  51. 51.
    A. Zanna, H.Z. Munthe-Kaas, Generalized polar decompositions for the approximation of the matrix exponential, SIAM J. Matrix Anal. Appl. 23(3), 840–862 (2002). MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© SFoCM 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BergenBergenNorway
  2. 2.Inria Bordeaux Sud-OuestBordeauxFrance

Personalised recommendations