Skip to main content
Log in

Isosingular Sets and Deflation

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This article introduces the concept of isosingular sets, which are irreducible algebraic subsets of the set of solutions to a system of polynomial equations constructed by taking the closure of points with a common singularity structure. The definition of these sets depends on deflation, a procedure that uses differentiation to regularize solutions. A weak form of deflation has proven useful in regularizing algebraic sets, making them amenable to treatment by the algorithms of numerical algebraic geometry. We introduce a strong form of deflation and define deflation sequences, which, in a different context, are the sequences arising in Thom–Boardman singularity theory. We then define isosingular sets in terms of deflation sequences. We also define the isosingular local dimension and examine the properties of isosingular sets. While isosingular sets are of theoretical interest as constructs for describing singularity structures of algebraic sets, they also expand the kinds of algebraic set that can be investigated with methods from numerical algebraic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Constructible algebraic sets are sets formed from algebraic sets with a finite number of Boolean operations (union, intersection, and complementation). The closure of such sets are the same in both the Zariski topology and the usual complex topology, so we draw no distinction in this article.

References

  1. V.I. Arnol’d, Singularities of smooth mappings, Russ. Math. Surv. 23, 1–43 (1968).

    Article  MATH  Google Scholar 

  2. D.J. Bates, J.D. Hauenstein, A.J. Sommese, C.W. Wampler, Adaptive multiprecision path tracking, SIAM J. Numer. Anal. 46(2), 722–746 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  3. D.J. Bates, J.D. Hauenstein, C. Peterson, A.J. Sommese, Numerical decomposition of the rank-deficiency set of a matrix of multivariate polynomials, in Approximate Commutative Algebra. Texts Monogr. Symbol. Comput. (Springer, Vienna, 2009), pp. 55–77.

    Chapter  Google Scholar 

  4. D.J. Bates, J.D. Hauenstein, A.J. Sommese, C.W. Wampler, Stepsize control for adaptive multiprecision path tracking, Contemp. Math. 496, 21–31 (2009).

    Article  MathSciNet  Google Scholar 

  5. D.J. Bates, J.D. Hauenstein, A.J. Sommese, Efficient path tracking methods, Numer. Algorithms 58(4), 451–459 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  6. D.J. Bates, J.D. Hauenstein, A.J. Sommese, C.W. Wampler, Bertini: software for numerical algebraic geometry. Available at http://www.nd.edu/~sommese/bertini.

  7. J. Boardman, Singularities of differentiable maps, Publ. Math. IHÉS 33, 21–57 (1967).

    MathSciNet  MATH  Google Scholar 

  8. D.A. Cox, J. Little, D. O’Shea, Using Algebraic Geometry (Springer, Berlin, 2005).

    MATH  Google Scholar 

  9. B.H. Dayton, Z. Zeng, Computing the multiplicity structure in solving polynomial systems, in ISSAC’05 (ACM, New York, 2005), pp. 116–123.

    Google Scholar 

  10. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150 (Springer, New York, 1995).

    MATH  Google Scholar 

  11. M. Giusti, G. Lecerf, B. Salvy, J.-C. Yakoubsohn, On location and approximation of clusters of zeros: case of embedding dimension one, Found. Comput. Math. 7(1), 1–49 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Griewank, M.R. Osborne, Analysis of Newton’s method at irregular singularities, SIAM J. Numer. Anal. 20(4), 747–773 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Griffis, J. Duffy, Method and apparatus for controlling geometrically simple parallel mechanisms with distinctive connections. US Patent 5,179,525 (1993).

  14. J. Guckenheimer, Y. Xiang, Defining equations for bifurcations and singularities, Mosc. Math. J. 3(3), 935–946 (2003).

    MathSciNet  MATH  Google Scholar 

  15. J.D. Hauenstein, A.J. Sommese, Witness sets of projections, Appl. Math. Comput. 217(7), 3349–3354 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. J.D. Hauenstein, C.W. Wampler, Numerically intersecting algebraic varieties via witness sets, Appl. Math. Comput. 219(10), 5730–5742 (2013).

    Article  MathSciNet  Google Scholar 

  17. J.D. Hauenstein, A.J. Sommese, C.W. Wampler, Regeneration homotopies for solving systems of polynomials, Math. Comput. 80, 345–377 (2011).

    MathSciNet  MATH  Google Scholar 

  18. J.D. Hauenstein, A.J. Sommese, C.W. Wampler, Regenerative cascade homotopies for solving polynomial systems, Appl. Math. Comput. 218(4), 1240–1246 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Huber, J. Verschelde, Polyhedral end games for polynomial continuation, Numer. Algorithms 18(1), 91–108 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  20. M.L. Husty, A. Karger, Self-motions of Griffis–Duffy type parallel manipulators, in Proc. 2000 IEEE Int. Conf. Robotics and Automation, San Francisco, CA, April 24–28, 2000. CDROM.

    Google Scholar 

  21. G. Lecerf, Quadratic Newton iteration for systems with multiplicity, Found. Comput. Math. 2(3), 247–293 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Leykin, Numerical primary decomposition, in ISSAC 2008 (ACM, New York, 2008), pp. 165–172.

    Google Scholar 

  23. A. Leykin, J. Verschelde, A. Zhao, Newton’s method with deflation for isolated singularities of polynomial systems, Theor. Comput. Sci. 359, 111–122 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Leykin, J. Verschelde, A. Zhao, Higher-order deflation for polynomial systems with isolated singular solutions, in Algorithms in Algebraic Geometry. IMA Vol. Math. Appl., vol. 146 (Springer, New York, 2008), pp. 79–97.

    Chapter  Google Scholar 

  25. Y. Lu, D.J. Bates, A.J. Sommese, C.W. Wampler, Finding all real points of a complex curve, Contemp. Math. 448, 183–205 (2007).

    Article  MathSciNet  Google Scholar 

  26. A.P. Morgan, A.J. Sommese, C.W. Wampler, Computing singular solutions to nonlinear analytic systems, Numer. Math. 58, 669–684 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  27. A.P. Morgan, A.J. Sommese, C.W. Wampler, A power series method for computing singular solutions to nonlinear analytic systems, Numer. Math. 63, 391–409 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  28. A.P. Morgan, A.J. Sommese, C.W. Wampler, Computing singular solutions to polynomial systems, Adv. Appl. Math. 13, 305–327 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Ojika, Modified deflation algorithm for the solution of singular problems. I. A system of nonlinear algebraic equations, J. Math. Anal. Appl. 123, 199–221 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  30. T. Ojika, S. Watanabe, T. Mitsui, Deflation algorithm for the multiple roots of a system of nonlinear equations, J. Math. Anal. Appl. 96, 463–479 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  31. A.J. Sommese, C.W. Wampler, The Numerical Solution of Systems of Polynomials Arising in Engineering and Science (World Scientific, Singapore, 2005).

    Book  MATH  Google Scholar 

  32. A.J. Sommese, J. Verschelde, C.W. Wampler, Numerical decomposition of the solution sets of polynomial systems into irreducible components, SIAM J. Numer. Anal. 38(6), 2022–2046 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  33. A.J. Sommese, J. Verschelde, C.W. Wampler, Symmetric functions applied to decomposing solution sets of polynomial systems, SIAM J. Numer. Anal. 40(6), 2026–2046 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  34. C.W. Wampler, J.D. Hauenstein, A.J. Sommese, Mechanism mobility and a local dimension test, Mech. Mach. Theory 46(9), 1193–1206 (2011).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gert-Martin Greuel for sharing his knowledge regarding Thom–Boardman singularities, the Mittag-Leffler Institute (Djursholm, Sweden) for their support and hospitality, and the anonymous referees for their helpful comments.

J.D. Hauenstein was supported in part by the Mittag-Leffler Institute, and NSF grant DMS-1262428. C.W. Wampler was supported by the Mittag-Leffler Institute and NSF grant DMS-0712910.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Wampler.

Additional information

Communicated by Teresa Krick.

Appendix: Foldable Stewart–Gough Platform System

Appendix: Foldable Stewart–Gough Platform System

The polynomials for the foldable Stewart–Gough platform, which are presented using the variables \([e_{1},e_{2},e_{3},e_{4},g_{1},g_{2},g_{3},g_{4}]\in {\mathbb{P}}^{7}\), are as follows. If \(r=\sqrt{3}\) and \(G=g_{1}^{2} + g_{2}^{2} + g_{3}^{2} + g_{4}^{2}\), the polynomial system is {f 1,…,f 7} defined as

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauenstein, J.D., Wampler, C.W. Isosingular Sets and Deflation. Found Comput Math 13, 371–403 (2013). https://doi.org/10.1007/s10208-013-9147-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-013-9147-y

Keywords

Mathematics Subject Classification (2010)

Navigation