Skip to main content

The Convex Geometry of Linear Inverse Problems


In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered includes those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include well-studied cases from many technical fields such as sparse vectors (signal processing, statistics) and low-rank matrices (control, statistics), as well as several others including sums of a few permutation matrices (ranked elections, multiobject tracking), low-rank tensors (computer vision, neuroscience), orthogonal matrices (machine learning), and atomic measures (system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm. The facial structure of the atomic norm ball carries a number of favorable properties that are useful for recovering simple models, and an analysis of the underlying convex geometry provides sharp estimates of the number of generic measurements required for exact and robust recovery of models from partial information. These estimates are based on computing the Gaussian widths of tangent cones to the atomic norm ball. When the atomic set has algebraic structure the resulting optimization problems can be solved or approximated via semidefinite programming. The quality of these approximations affects the number of measurements required for recovery, and this tradeoff is characterized via some examples. Thus this work extends the catalog of simple models (beyond sparse vectors and low-rank matrices) that can be recovered from limited linear information via tractable convex programming.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    spherical cap is a subset of the sphere obtained by intersecting the sphere \(\mathbb{S}^{p-1}\) with a halfspace.

  2. 2.

    While Proposition 3.15 follows as a consequence of the general result in Corollary 3.14, one can remove the constant factor 9 in the statement of Proposition 3.15 by carrying out a more refined analysis of the Birkhoff polytope.


  1. 1.

    S. Aja-Fernandez, R. Garcia, D. Tao, X. Li, Tensors in Image Processing and Computer Vision. Advances in Pattern Recognition (Springer, Berlin, 2009).

    MATH  Book  Google Scholar 

  2. 2.

    N. Alon, A. Naor, Approximating the cut-norm via Grothendieck’s inequality, SIAM J. Comput. 35, 787–803 (2006).

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    A. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inf. Theory 39, 930–945 (1993).

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    A. Barvinok, A Course in Convexity (American Mathematical Society, Providence, 2002).

    MATH  Google Scholar 

  5. 5.

    C. Beckmann, S. Smith, Tensorial extensions of independent component analysis for multisubject FMRI analysis, NeuroImage 25, 294–311 (2005).

    Article  Google Scholar 

  6. 6.

    D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Athena Scientific, Nashua, 2007).

    Google Scholar 

  7. 7.

    D. Bertsekas, A. Nedic, A. Ozdaglar, Convex Analysis and Optimization (Athena Scientific, Nashua, 2003).

    MATH  Google Scholar 

  8. 8.

    P. Bickel, Y. Ritov, A. Tsybakov, Simultaneous analysis of Lasso and Dantzig selector, Ann. Stat. 37, 1705–1732 (2009).

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    J. Bochnak, M. Coste, M. Roy, Real Algebraic Geometry (Springer, Berlin, 1988).

    Google Scholar 

  10. 10.

    F.F. Bonsall, A general atomic decomposition theorem and Banach’s closed range theorem, Q. J. Math. 42, 9–14 (1991).

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovasz, M. Simonovits, Approximation of diameters: randomization doesn’t help, in Proceedings of the 39th Annual Symposium on Foundations of Computer Science (1998), pp. 244–251.

    Google Scholar 

  12. 12.

    J. Cai, E. Candès, Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM J. Optim. 20, 1956–1982 (2008).

    Article  Google Scholar 

  13. 13.

    J. Cai, S. Osher, Z. Shen, Linearized Bregman iterations for compressed sensing, Math. Comput. 78, 1515–1536 (2009).

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    E. Candès, X. Li, Y. Ma, J. Wright, Robust principal component analysis? J. ACM 58, 1–37 (2011).

    Article  Google Scholar 

  15. 15.

    E. Candès, Y. Plan, Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements, IEEE Trans. Inf. Theory 57, 2342–2359 (2011).

    Article  Google Scholar 

  16. 16.

    E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory 52, 489–509 (2006).

    MATH  Article  Google Scholar 

  17. 17.

    E.J. Candès, B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math. 9, 717–772 (2009).

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    E. Candès, T. Tao, Decoding by linear programming, IEEE Trans. Inf. Theory 51, 4203–4215 (2005).

    Article  Google Scholar 

  19. 19.

    V. Chandrasekaran, S. Sanghavi, P.A. Parrilo, A.S. Willsky, Rank-sparsity incoherence for matrix decomposition, SIAM J. Optim. 21, 572–596 (2011).

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    P. Combettes, V. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul. 4, 1168–1200 (2005).

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    I. Daubechies, M. Defriese, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math. LVII, 1413–1457 (2004).

    Article  Google Scholar 

  22. 22.

    K.R. Davidson, S.J. Szarek, Local operator theory, random matrices and Banach spaces, in Handbook of the Geometry of Banach Spaces, vol. I (2001), pp. 317–366.

    Chapter  Google Scholar 

  23. 23.

    V. de Silva, L. Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl. 30, 1084–1127 (2008).

    MathSciNet  Article  Google Scholar 

  24. 24.

    R. DeVore, V. Temlyakov, Some remarks on greedy algorithms, Adv. Comput. Math. 5, 173–187 (1996).

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    M. Deza, M. Laurent, Geometry of Cuts and Metrics (Springer, Berlin, 1997).

    MATH  Google Scholar 

  26. 26.

    D.L. Donoho, High-dimensional centrally-symmetric polytopes with neighborliness proportional to dimension, Discrete Comput. Geom. (online) (2005).

  27. 27.

    D.L. Donoho, For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution, Commun. Pure Appl. Math. 59, 797–829 (2006).

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    D.L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory 52, 1289–1306 (2006).

    MathSciNet  Article  Google Scholar 

  29. 29.

    D. Donoho, J. Tanner, Sparse nonnegative solution of underdetermined linear equations by linear programming, Proc. Natl. Acad. Sci. USA 102, 9446–9451 (2005).

    MathSciNet  Article  Google Scholar 

  30. 30.

    D. Donoho, J. Tanner, Counting faces of randomly-projected polytopes when the projection radically lowers dimension, J. Am. Math. Soc. 22, 1–53 (2009).

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    D. Donoho, J. Tanner, Counting the faces of randomly-projected hypercubes and orthants with applications, Discrete Comput. Geom. 43, 522–541 (2010).

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    R.M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Funct. Anal. 1, 290–330 (1967).

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    M. Dyer, A. Frieze, R. Kannan, A random polynomial-time algorithm for approximating the volume of convex bodies, J. ACM 38, 1–17 (1991).

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    M. Fazel, Matrix rank minimization with applications, Ph.D. thesis, Department of Electrical Engineering, Stanford University (2002).

  35. 35.

    M. Figueiredo, R. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Trans. Image Process. 12, 906–916 (2003).

    MathSciNet  Article  Google Scholar 

  36. 36.

    M. Fukushima, H. Mine, A generalized proximal point algorithm for certain non-convex minimization problems, Int. J. Inf. Syst. Sci. 12, 989–1000 (1981).

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    M. Goemans, D. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. ACM 42, 1115–1145 (1995).

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Y. Gordon, On Milman’s inequality and random subspaces which escape through a mesh in ℝn, in Geometric Aspects of Functional Analysis, Israel Seminar 1986–1987. Lecture Notes in Mathematics, vol. 1317 (1988), pp. 84–106.

    Chapter  Google Scholar 

  39. 39.

    J. Gouveia, P. Parrilo, R. Thomas, Theta bodies for polynomial ideals, SIAM J. Optim. 20, 2097–2118 (2010).

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    T. Hale, W. Yin, Y. Zhang, A fixed-point continuation method for 1-regularized minimization: methodology and convergence, SIAM J. Optim. 19, 1107–1130 (2008).

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    J. Harris, Algebraic Geometry: A First Course (Springer, Berlin).

  42. 42.

    J. Haupt, W.U. Bajwa, G. Raz, R. Nowak, Toeplitz compressed sensing matrices with applications to sparse channel estimation, IEEE Trans. Inform. Theory 56(11), 5862–5875 (2010).

    MathSciNet  Article  Google Scholar 

  43. 43.

    S. Jagabathula, D. Shah, Inferring rankings using constrained sensing, IEEE Trans. Inf. Theory 57, 7288–7306 (2011).

    MathSciNet  Article  Google Scholar 

  44. 44.

    L. Jones, A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training, Ann. Stat. 20, 608–613 (1992).

    MATH  Article  Google Scholar 

  45. 45.

    D. Klain, G. Rota, Introduction to Geometric Probability (Cambridge University Press, Cambridge, 1997).

    MATH  Google Scholar 

  46. 46.

    T. Kolda, Orthogonal tensor decompositions, SIAM J. Matrix Anal. Appl. 23, 243–255 (2001).

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    T. Kolda, B. Bader, Tensor decompositions and applications, SIAM Rev. 51, 455–500 (2009).

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    M. Ledoux, The Concentration of Measure Phenomenon (American Mathematical Society, Providence, 2000).

    Google Scholar 

  49. 49.

    M. Ledoux, M. Talagrand, Probability in Banach Spaces (Springer, Berlin, 1991).

    MATH  Google Scholar 

  50. 50.

    J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, in Proceedings of the CACSD Conference, Taiwan (2004). Available from

    Google Scholar 

  51. 51.

    S. Ma, D. Goldfarb, L. Chen, Fixed point and Bregman iterative methods for matrix rank minimization, Math. Program. 128, 321–353 (2011).

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    O. Mangasarian, B. Recht, Probability of unique integer solution to a system of linear equations, Eur. J. Oper. Res. 214, 27–30 (2011).

    MathSciNet  MATH  Article  Google Scholar 

  53. 53.

    J. Matoušek, Lectures on Discrete Geometry (Springer, Berlin, 2002).

    MATH  Book  Google Scholar 

  54. 54.

    S. Negahban, P. Ravikumar, M. Wainwright, B. Yu, A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers, Preprint (2010).

  55. 55.

    Y. Nesterov, Quality of semidefinite relaxation for nonconvex quadratic optimization. Technical report (1997).

  56. 56.

    Y. Nesterov, Introductory Lectures on Convex Optimization (Kluwer Academic, Amsterdam, 2004).

    MATH  Google Scholar 

  57. 57.

    Y. Nesterov, Gradient methods for minimizing composite functions, CORE discussion paper 76 (2007).

  58. 58.

    P.A. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Math. Program. 96, 293–320 (2003).

    MathSciNet  MATH  Article  Google Scholar 

  59. 59.

    G. Pisier, Remarques sur un résultat non publié de B. Maurey. Séminaire d’analyse fonctionnelle (Ecole Polytechnique Centre de Mathematiques, Palaiseau, 1981).

    Google Scholar 

  60. 60.

    G. Pisier, Probabilistic methods in the geometry of Banach spaces, in Probability and Analysis, pp. 167–241 (1986).

    Chapter  Google Scholar 

  61. 61.

    E. Polak, Optimization: Algorithms and Consistent Approximations (Springer, Berlin, 1997).

    MATH  Google Scholar 

  62. 62.

    H. Rauhut, Circulant and Toeplitz matrices in compressed sensing, in Proceedings of SPARS’09, (2009).

    Google Scholar 

  63. 63.

    B. Recht, M. Fazel, P.A. Parrilo, Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization, SIAM Rev. 52, 471–501 (2010).

    MathSciNet  MATH  Article  Google Scholar 

  64. 64.

    B. Recht, W. Xu, B. Hassibi, Null space conditions and thresholds for rank minimization, Math. Program., Ser. B 127, 175–211 (2011).

    MathSciNet  MATH  Article  Google Scholar 

  65. 65.

    R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970).

    MATH  Google Scholar 

  66. 66.

    M. Rudelson, R. Vershynin, Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements, in CISS 2006 (40th Annual Conference on Information Sciences and Systems) (2006).

    Google Scholar 

  67. 67.

    R. Sanyal, F. Sottile, B. Sturmfels, Orbitopes, Preprint, arXiv:0911.5436 (2009).

  68. 68.

    N. Srebro, A. Shraibman, Rank, trace-norm and max-norm in 18th Annual Conference on Learning Theory (COLT) (2005).

    Google Scholar 

  69. 69.

    M. Stojnic, Various thresholds for 1-optimization in compressed sensing, Preprint, arXiv:0907.3666 (2009).

  70. 70.

    K. Toh, M. Todd, R. Tutuncu, SDPT3—a MATLAB software package for semidefinite-quadratic-linear programming. Available from.

  71. 71.

    K. Toh, S. Yun, An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems, Pac. J. Optim. 6, 615–640 (2010).

    MathSciNet  MATH  Google Scholar 

  72. 72.

    S. van de Geer, P. Bühlmann, On the conditions used to prove oracle results for the Lasso, Electron. J. Stat. 3, 1360–1392 (2009).

    MathSciNet  Article  Google Scholar 

  73. 73.

    S. Wright, R. Nowak, M. Figueiredo, Sparse reconstruction by separable approximation, IEEE Trans. Signal Process. 57, 2479–2493 (2009).

    MathSciNet  Article  Google Scholar 

  74. 74.

    W. Xu, B. Hassibi, Compressive sensing over the Grassmann manifold: a unified geometric framework, IEEE Trans. Inform. Theory 57(10), 6894–6919 (2011).

    MathSciNet  Article  Google Scholar 

  75. 75.

    W. Yin, S. Osher, J. Darbon, D. Goldfarb, Bregman iterative algorithms for compressed sensing and related problems, SIAM J. Imaging Sci. 1, 143–168 (2008).

    MathSciNet  MATH  Article  Google Scholar 

  76. 76.

    G. Ziegler, Lectures on Polytopes (Springer, Berlin, 1995).

    MATH  Book  Google Scholar 

Download references


This work was supported in part by AFOSR grant FA9550-08-1-0180, in part by a MURI through ARO grant W911NF-06-1-0076, in part by a MURI through AFOSR grant FA9550-06-1-0303, in part by NSF FRG 0757207, in part through ONR award N00014-11-1-0723, and NSF award CCF-1139953.

We gratefully acknowledge Holger Rauhut for several suggestions on how to improve the presentation in Sect. 3, and Amin Jalali for pointing out an error in a previous draft. We thank Santosh Vempala, Joel Tropp, Bill Helton, Martin Jaggi, and Jonathan Kelner for helpful discussions. Finally, we acknowledge the suggestions of the associate editor Emmanuel Candès as well as the comments and pointers to references made by the reviewers, all of which improved our paper.

Author information



Corresponding author

Correspondence to Venkat Chandrasekaran.

Additional information

Communicated by Emmanuel Candès.


Appendix A: Proof of Proposition 3.6


First note that the Gaussian width can be upper-bounded as follows:

$$ w\bigl(\mathcal{C} \cap\mathbb{S}^{p-1}\bigr) \leq \operatorname{\mathbb{E}}_\mathbf{g}\Bigl[ \sup_{\mathbf{z}\in \mathcal{C}\cap\mathcal{B}(0,1)} \mathbf{g}^T \mathbf{z}\Bigr], $$

where \(\mathcal{B}(0,1)\) denotes the unit Euclidean ball. The expression on the right-hand side inside the expected value can be expressed as the optimal value of the following convex optimization problem for each g∈ℝp:

$$ \begin{array}{l@{\ }l} \displaystyle\max_{\mathbf{z}} & \mathbf{g}^T \mathbf{z}\\[5pt] \mathrm{s.t.} & \mathbf{z}\in\mathcal{C},\\[5pt] & \|\mathbf{z}\|^2\leq1. \end{array} $$

We now proceed to form the dual problem of (31) by first introducing the Lagrangian

$$ \mathcal{L}(\mathbf{z},\mathbf{u},\gamma) = \mathbf{g}^T \mathbf {z}+ \gamma\bigl(1- \mathbf{z}^T \mathbf{z}\bigr) - \mathbf{u}^T \mathbf{z} $$

where \(\mathbf{u}\in\mathcal{C}^{\ast}\) and γ≥0 is a scalar. To obtain the dual problem we maximize the Lagrangian with respect to z, which amounts to setting

$$ \mathbf{z}= \frac{1}{2\gamma} (\mathbf{g}-\mathbf{u}). $$

Putting this into the Lagrangian above gives the dual problem

$$ \begin{array}{l@{\ }l} \min& \gamma+ \dfrac{1}{4\gamma} \|\mathbf{g}-\mathbf{u}\|^2\\[7pt] \mathrm{s.t.} & \mathbf{u}\in\mathcal{C}^\ast,\\ & \gamma\geq0. \end{array} $$

Solving this optimization problem with respect to γ we find that \(\gamma= \frac{1}{2} \|\mathbf{g}-\mathbf{u}\|\), which gives the dual problem to (31)

$$ \begin{array}{l@{\ }l} \min& \|\mathbf{g}-\mathbf{u}\|\\[5pt] \mathrm{s.t.} & \mathbf{u}\in\mathcal{C}^\ast. \end{array} $$

Under very mild assumptions about \(\mathcal{C}\), the optimal value of (32) is equal to that of (31) (for example as long as \(\mathcal{C}\) has a nonempty relative interior, strong duality holds). Hence we have derived

$$ \operatorname{\mathbb{E}}_\mathbf{g}\Bigl[ \sup_{\mathbf{z}\in\mathcal{C}\cap\mathcal{B}(0,1)} \mathbf{g}^T \mathbf{z}\Bigr] =\operatorname{\mathbb{E}}_\mathbf {g}\bigl[\mathrm{dist}\bigl(\mathbf{g}, \mathcal{C}^\ast\bigr) \bigr]. $$

This equation combined with the bound (30) gives us the desired result. □

Appendix B: Proof of Theorem 3.9


We set \(\beta= \tfrac{1}{\varTheta}\). First note that if \(\beta\geq \tfrac{1}{4} \exp\{\tfrac{p}{9}\}\) then the width bound exceeds \(\sqrt{p}\), which is the maximal possible value for the width of \(\mathcal{C}\). Thus, we will assume throughout that \(\beta\leq \tfrac{1}{4} \exp\{\tfrac{p}{9}\}\).

Using Proposition 3.6 we need to upper-bound the expected distance to the polar cone. Let \(\mathbf{g}\sim\mathcal {N}(0,I)\) be a normally distributed random vector. Then the norm of g is independent from the angle of g. That is, ∥g∥ is independent from g/∥g∥. Moreover g/∥g∥ is distributed as a uniform sample on \(\mathbb{S}^{p-1}\), and \(\operatorname{\mathbb{E}}_{\mathbf{g}}[\|\mathbf{g}\|]\leq\sqrt{p}\). Thus we have

$$ \operatorname{\mathbb{E}}_\mathbf{g}\bigl[\mathrm{dist}\bigl (\mathbf{g},\mathcal{C}^\ast\bigr) \bigr] \leq\operatorname{\mathbb{E}}_\mathbf{g}\bigl[\|\mathbf {g}\|\cdot\mathrm{dist}\bigl(\mathbf{g}/\|\mathbf{g}\|, \mathcal{C}^\ast\cap\mathbb{S}^{p-1}\bigr)\bigr]\leq\sqrt{p} \operatorname{\mathbb{E}}_\mathbf{u}\bigl[ \mathrm{dist}\bigl (\mathbf{u}, \mathcal{C}^\ast\cap \mathbb{S}^{p-1}\bigr)\bigr] $$

where u is sampled uniformly on \(\mathbb{S}^{p-1}\).

To bound the latter quantity, we will use isoperimetry. Suppose A is a subset of \(\mathbb{S}^{p-1}\) and B is a spherical cap with the same volume as A. Let N(A,r) denote the locus of all points in the sphere of Euclidean distance at most r from the set A. Let μ denote the Haar measure on \(\mathbb{S}^{p-1}\) and let μ(A;r) denote the measure of N(A,r). Then spherical isoperimetry states that μ(A;r)≥μ(B;r) for all r≥0 (see, for example, [48, 53]).

Let B now denote a spherical cap with \(\mu(B)=\mu(\mathcal{C}^{\ast}\cap\mathbb{S}^{p-1})\). Then we have


where the first equality is the integral form of the expected value and the last inequality follows by isoperimetry. Hence we can bound the expected distance to the polar cone intersecting the sphere using only knowledge of the volume of spherical caps on \(\mathbb{S}^{p-1}\).

To proceed let v(φ) denote the volume of a spherical cap subtending a solid angle φ. An explicit formula for v(φ) is

$$ v(\varphi)= z_p^{-1}\int_0^\varphi \sin^{p-1}(\vartheta)\,\mathrm{d}\vartheta $$

where \(z_{p} = \int_{0}^{\pi}\sin^{p-1}(\vartheta)\,\mathrm{d}\vartheta\) [45]. Let φ(β) denote the minimal solid angle of a cap such that β copies of that cap cover \(\mathbb {S}^{p-1}\). Since the geodesic distance on the sphere is always greater than or equal to the Euclidean distance, if K is a spherical cap subtending ψ radians, μ(K;t)≥v(ψ+t). Therefore

$$ \int_0^\infty\bigl(1- \mu(B;t)\bigr)\,\mathrm{d}t \leq\int_0^\infty\bigl(1-v\bigl( \varphi(\beta)+t\bigr)\bigr)\,\mathrm{d}t . $$

We can proceed to simplify the right-hand side integral:


(43) follows by switching the order of integration, and the rest of these equalities follow by straightforward integration and some algebra.

Using the inequalities that \(z_{p} \geq\frac{2}{\sqrt{p-1}}\) (see [48]) and sin(x)≤exp(−(xπ/2)2/2) for x∈[0,π], we can bound the last integral as


Performing the change of variables \(a = \sqrt{p-1}(\vartheta-\tfrac {\pi}{2})\), we are left with the integral


In this final bound, we bounded the first term by dropping the upper integrand, and for the second term we used the fact that

$$ \int_{-\infty}^\infty\exp\bigl(-x^2/2\bigr) \,\mathrm{d}x = \sqrt{2\pi}. $$

We are now left with the task of computing a lower bound for φ(β). We need to first reparameterize the problem. Let K be a spherical cap. Without loss of generality, we may assume that

$$ K = \bigl\{ x\in\mathbb{S}^{p-1}:x_1\geq h\bigr\} $$

for some h∈[0,1]. Here h is the height of the cap over the equator. Via elementary trigonometry, the solid angle that K subtends is given by π/2−sin−1(h). Hence, if h(β) is the largest number such that β caps of height h cover \(\mathbb {S}^{p-1}\), then h(β)=sin(π/2−φ(β)).

The quantity h(β) may be estimated using the following estimate from [11]. For h∈[0,1], let γ(p,h) denote the volume of a spherical cap of \(\mathbb{S}^{p-1}\) of height h.

Lemma B.1

(See [11])

For \(1\geq h\geq\frac{2}{\sqrt{p}}\),

$$ \frac{1}{10 h \sqrt{p}}\bigl(1-h^2\bigr)^{\frac{p-1}{2}} \leq \gamma(p,h) \leq\frac{1}{2 h \sqrt{p}}\bigl(1-h^2\bigr)^{\frac{p-1}{2}} . $$

Note that for \(h \geq\frac{2}{\sqrt{p}}\),

$$ \frac{1}{2 h \sqrt{p}}\bigl(1-h^2\bigr)^{\frac{p-1}{2}} \leq \frac{1}{4}\bigl(1-h^2\bigr)^{\frac{p-1}{2}} \leq \frac{1}{4}\exp\biggl(-\frac{p-1}{2} h^2\biggr). $$

So if

$$ h = \sqrt{\frac{2\log(4\beta)}{p-1}} $$

then h≤1 because we have assumed \(\beta\leq\tfrac{1}{4} \exp\{ \tfrac{p}{9}\}\) and p≥9. Moreover, \(h\geq\frac{2}{\sqrt{p}}\) and the volume of the cap with height h is less than or equal to 1/β. That is

$$ \varphi(\beta)\geq\pi/2 - \sin^{-1} \biggl( \sqrt{\frac{2\log (4\beta)}{p-1}} \biggr). $$

Combining the estimate (50) with Proposition 3.6, and using our estimate for φ(β), we get the bound


This expression can be simplified by using the following bounds. First, sin−1(x)≥x lets us upper-bound the first term by \(\sqrt{\frac{p}{p-1}}\frac{1}{8\beta}\). For the second term, using the inequality \(\sin^{-1}(x)\leq\tfrac{\pi}{2}x\) results in the upper bound

$$ w(\mathcal{C}) \leq\sqrt{\frac{p}{p-1}} \biggl( \frac{1}{8\beta} + \frac{\pi^{3/2}}{2} \sqrt{\log(4\beta)} \biggr). $$

For p≥9 the upper bound can be expressed simply as \(w(\mathcal{C})\leq3\sqrt{\log(4 \beta)}\). We recall that \(\beta= \tfrac{1}{\varTheta}\), which completes the proof of the theorem.  □

Appendix C: Direct Width Calculations

We first give the proof of Proposition 3.10.


Let x be an s-sparse vector in ℝp with 1 norm equal to 1, and let \(\mathcal{A}\) denote the set of unit-Euclidean-norm one-sparse vectors. Let Δ denote the set of coordinates where x is nonzero. The normal cone at x with respect to the 1 ball is given by


Here Δc represents the zero entries of x . The minimum squared distance to the normal cone at x can be formulated as a one-dimensional convex optimization problem for arbitrary z∈ℝp



$$ \mathrm{shrink}(z,t) = \left\{ \begin{array}{l@{\quad}l} z+t & z<-t,\\ 0 & -t\leq z \leq t,\\ z - t & z>t \end{array} \right. $$

is the 1-shrinkage function. Hence, for any fixed t≥0 independent of g, we have


Now we directly integrate the second term, treating each summand individually. For a zero-mean, unit-variance normal random variable g,


The first simplification follows because the shrink function and Gaussian distributions are symmetric about the origin. The second equality follows by integrating by parts. The inequality follows by a tight bound on the Gaussian Q-function:

$$ Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} \exp \bigl(-g^2/2\bigr) \,\mathrm{d}g \leq\frac{1}{\sqrt{2\pi}}\frac {1}{x}\exp \bigl(-x^2/2\bigr)\quad\mbox{for }x>0. $$

Using this bound, we get

$$ \operatorname{\mathbb{E}}\Bigl[\inf_{\mathbf {u}\in N_\mathcal{A}(\mathbf{x}^{\star})} \|\mathbf{g}-\mathbf{u}\|_2^2 \Bigr] \leq s\bigl(1+t^2\bigr) +(p-s)\frac{2}{\sqrt{2\pi}} \frac{1}{t}\exp\bigl(-t^2/2\bigr). $$

Setting \(t= \sqrt{2\log(p/s)}\) gives

$$ \operatorname{\mathbb{E}}\Bigl[\inf _{\mathbf{z}\in N_\mathcal{A}(\mathbf{x}^{\star})} \|\mathbf {g}-\mathbf{z} \|_2^2 \Bigr] \leq s \biggl(1+2\log\biggl( \frac{p}{s} \biggr) \biggr)+\frac{s(1-s/p)}{\pi\sqrt{\log (p/s)}}\leq2s\log(p/s )+ \frac{5}{4}s. $$

The last inequality follows because

$$ \frac{(1-s/p)}{\pi\sqrt{\log(p/s)}}\leq0.204<1/4 $$

whenever 0≤sp. □

Next we give the proof of Proposition 3.11.


Let x be an m 1×m 2 matrix of rank r with singular value decomposition UΣV , and let \(\mathcal{A}\) denote the set of rank-one unit-Euclidean-norm matrices of size m 1×m 2. Without loss of generality, impose the conventions m 1m 2, Σ is r×r, U is m 1×r, and V is m 2×r, and assume the nuclear norm of x is equal to 1.

Let u k (respectively v k ) denote the k’th column of U (respectively V). It is convenient to introduce the orthogonal decomposition \({\mathbb{R}}^{m_{1} \times m_{2}} = \Delta\oplus\Delta ^{\perp}\) where Δ is the linear space spanned by elements of the form u k z T and \(\mathbf{y}\mathbf{v}_{k}^{T}\), 1≤kr, where z and y are arbitrary, and Δ is the orthogonal complement of Δ. The space Δ is the subspace of matrices spanned by the family (yz T), where y (respectively z) is any vector orthogonal to all the columns of U (respectively V). The normal cone of the nuclear norm ball at x is given by the cone generated by the subdifferential at x :


Note that here \(\|Z\|_{\mathcal{A}}^{\ast}\) is the operator norm, equal to the maximum singular value of Z [63].

Let G be a Gaussian random matrix with i.i.d. entries, each with mean zero and unit variance. Then the matrix

$$ Z(G) = \bigl\|\mathcal{P}_{\Delta^{\perp}}(G)\bigr\| UV^* + \mathcal{P}_{\Delta^{\perp}}(G) $$

is in the normal cone at x . We can then compute


Here (79) follows because \(\mathcal{P}_{\Delta }(G)\) and \(\mathcal{P}_{\Delta^{\perp}}(G)\) are independent. The final line follows because dim(T)=r(m 1+m 2r) and the Frobenius (i.e., Euclidean) norm of UV is \(\|UV^{*}\|_{F}=\sqrt{r}\). Due to the isotropy of Gaussian random matrices, \(\mathcal{P}_{\Delta^{\perp}}(G)\) is identically distributed as an (m 1r)×(m 2r) matrix with i.i.d. Gaussian entries each with mean zero and variance one. We thus know that

$$ \operatorname{\mathbb{P}}\bigl[ \bigl\|\mathcal{P}_{\Delta^{\perp }}(G)\bigr\|\geq\sqrt{m_1-r}+\sqrt {m_2-r} +s \bigr] \leq\exp\bigl(-s^2/2 \bigr) $$

(see, for example, [22]). To bound the latter expectation, we again use the integral form of the expected value. Letting \(\mu_{T^{\perp}}\) denote the quantity \(\sqrt{m_{1}-r}+\sqrt{m_{2}-r}\), we have


Using this bound in (80), we obtain


where the second inequality follows from the fact that (a+b)2≤2a 2+2b 2. We conclude that 3r(m 1+m 2r) random measurements are sufficient to recover a rank r, m 1×m 2 matrix using the nuclear norm heuristic. □

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chandrasekaran, V., Recht, B., Parrilo, P.A. et al. The Convex Geometry of Linear Inverse Problems. Found Comput Math 12, 805–849 (2012).

Download citation


  • Convex optimization
  • Semidefinite programming
  • Atomic norms
  • Real algebraic geometry
  • Gaussian width
  • Symmetry

Mathematics Subject Classification

  • 52A41
  • 90C25
  • 90C22
  • 60D05
  • 41A45