Skip to main content
Log in

Backward Error Analysis and the Substitution Law for Lie Group Integrators

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Butcher series are combinatorial devices used in the study of numerical methods for differential equations evolving on vector spaces. More precisely, they are formal series developments of differential operators indexed over rooted trees, and can be used to represent a large class of numerical methods. The theory of backward error analysis for differential equations has a particularly nice description when applied to methods represented by Butcher series. For the study of differential equations evolving on more general manifolds, a generalization of Butcher series has been introduced, called the Lie–Butcher series. This paper presents the theory of backward error analysis for methods based on Lie–Butcher series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \({\mathcal{N}}\) with concatenation product can equivalently be defined as the linear space spanned by trees, \(V=k\{\operatorname {OT}\}\), equipped with a tensor product. Hence \({\mathcal{N}}\) can be defined as the tensor algebra on V. However, because we shall need other tensor products later we prefer the definition via concatenation of words.

  2. The vector fields are interpreted as differential operators acting on functions.

  3. This is true when \(\mathfrak {g}^{M}\) is replaced by Ξ M for any vector space Ξ.

  4. We note that the two operations f,gf[g] and f,gfg gives \(U(\mathfrak {g})^{M}\) the structure of a unital dipterous algebra (as defined in [21]).

  5. Coproducts will occasionally be written using the Sweedler notation Δ(ω)=∑ω (1)ω (2).

  6. Note that the concatenation deshuffling Hopf algebra is dual to the shuffle deconcatenation Hopf algebra.

  7. Being a graded and connected bialgebra \({\mathcal{H}}_{N}\) is automatically a Hopf algebra. A more direct argument, and formulas for the antipode, can be found in [28].

  8. In most applications we want to substitute infinite series and extend a⋆ to a homomorphism \(a\star\colon {\mathcal{N}}^{*}\rightarrow {\mathcal{N}}^{*}\). The extension to infinite substitution is straightforward because of the grading, we omit details. We write a⋆ also for infinite substitution.

  9. Lie series are formal series whose homogeneous components are Lie polynomials [33].

References

  1. G. Benettin, A. Giorgilli, On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms, J. Stat. Phys. 74(5), 1117–1143 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Brouder, Runge–Kutta methods and renormalization, Eur. Phys. J. C, Part. Fields 12(3), 521–534 (2000).

    Article  Google Scholar 

  3. J.C. Butcher, An algebraic theory of integration methods, Math. Comput. 26(117), 79–106 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  4. J.C. Butcher, Numerical Methods for Ordinary Differential Equations, 2nd edn. (Wiley, New York, 2008).

    Book  MATH  Google Scholar 

  5. D. Calaque, K. Ebrahimi-Fard, D. Manchon, Two interacting Hopf algebras of trees: A Hopf-algebraic approach to composition and substitution of B-series, Adv. Appl. Math. 47(2), 282–308 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Chapoton, Rooted trees and an exponential-like series, arXiv:math/0209104 (2002).

  7. P. Chartier, E. Hairer, G. Vilmart, A substitution law for B-series vector fields, Technical Report 5498, INRIA, 2005.

  8. P. Chartier, E. Hairer, G. Vilmart, Numerical integrators based on modified differential equations, Math. Comput. 76(260), 1941–1954 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Chartier, E. Hairer, G. Vilmart, Algebraic structures of B-series, Found. Comput. Math. 10(4), 407–427 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Chartier, A. Murua, An algebraic theory of order, Modél. Math. Anal. Numér. 43(4), 607–630 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Connes, D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Commun. Math. Phys. 199(1), 203–242 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Ebrahimi-Fard, J.M. Gracia-Bondía, F. Patras, A Lie theoretic approach to renormalization, Commun. Math. Phys. 276(2), 519–549 (2007).

    Article  MATH  Google Scholar 

  13. K. Ebrahimi-Fard, A. Lundervold, D. Manchon, H. Munthe-Kaas, J.E. Vatne, On the post-Lie operad, Preprint, 2011.

  14. S. Faltinsen, Backward error analysis for Lie-group methods, BIT Numer. Math. 40(4), 652–670 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Foissy, Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson–Schwinger equations, Adv. Math. 218(1), 136–162 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Hairer, Backward analysis of numerical integrators and symplectic methods, Ann. Numer. Math. 1(1–4), 107–132 (1994).

    MathSciNet  MATH  Google Scholar 

  17. E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration, 2nd edn. (Springer, Berlin, 2006).

    MATH  Google Scholar 

  18. E. Hairer, G. Wanner, On the Butcher group and general multi-value methods, Computing 13(1), 1–15 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Iserles, H. Munthe-Kaas, S.P. Nørsett, A. Zanna, Lie-group methods, Acta Numer. 9, 215–365 (2000).

    Article  Google Scholar 

  20. J.L. Loday, Cyclic Homology, 2nd edn. (Springer, Berlin, 1997).

    Google Scholar 

  21. J.L. Loday, M.O. Ronco, Combinatorial Hopf algebras, Clay Math. Proc. 11, 347–383 (2010).

    MathSciNet  Google Scholar 

  22. A. Lundervold, H. Munthe-Kaas, Hopf algebras of formal diffeomorphisms and numerical integration on manifolds, Contemp. Math. 539, 295–324 (2011).

    Article  MathSciNet  Google Scholar 

  23. A. Lundervold, H. Munthe-Kaas, On algebraic structures of numerical integration on vector spaces and manifolds, arXiv:1112.4465 (2011).

  24. D. Manchon, Hopf algebras in renormalisation, in Handbook of Algebra, vol. 5, ed. by M. Hazewinkel (North-Holland, Amsterdam, 2008), pp. 365–427.

    Google Scholar 

  25. H. Munthe-Kaas, Lie–Butcher theory for Runge–Kutta methods, BIT Numer. Math. 35(4), 572–587 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Munthe-Kaas, Runge–Kutta methods on Lie groups, BIT Numer. Math. 38(1), 92–111 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Munthe-Kaas, A. Lundervold, On post-Lie algebras, Lie–Butcher series and moving frames, arXiv:1203.4738 (2012).

  28. H. Munthe-Kaas, W. Wright, On the Hopf algebraic structure of Lie group integrators, Found. Comput. Math. 8(2), 227–257 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Murua, Formal series and numerical integrators, Part I: Systems of ODEs and symplectic integrators, Appl. Numer. Math. 29(2), 221–251 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Murua, The Hopf algebra of rooted trees, free Lie algebras, and Lie series, Found. Comput. Math. 6(4), 387–426 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Owren, A. Marthinsen, Runge–Kutta methods adapted to manifolds and based on rigid frames, BIT Numer. Math. 39(1), 116–142 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Reich, Backward error analysis for numerical integrators, SIAM J. Numer. Anal. 36(5), 1549–1570 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Reutenauer, Free Lie Algebras (Oxford University Press, Oxford, 1993).

    MATH  Google Scholar 

  34. B. Vallette, Homology of generalized partition posets, J. Pure Appl. Algebra 208(2), 699–725 (2007).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Kurusch Ebrahimi-Fard, Dominique Manchon and Jon-Eivind Vatne for interesting and enlightening discussions, and to the anonymous referees for their valuable comments. We would also like to acknowledge support from the Aurora Program, project 205042/V11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Lundervold.

Additional information

Communicated by Elizabeth Mansfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundervold, A., Munthe-Kaas, H. Backward Error Analysis and the Substitution Law for Lie Group Integrators. Found Comput Math 13, 161–186 (2013). https://doi.org/10.1007/s10208-012-9130-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-012-9130-z

Keywords

Mathematics Subject Classification (2010)

Navigation