Foundations of Computational Mathematics

, Volume 13, Issue 2, pp 161–186 | Cite as

Backward Error Analysis and the Substitution Law for Lie Group Integrators

Article

Abstract

Butcher series are combinatorial devices used in the study of numerical methods for differential equations evolving on vector spaces. More precisely, they are formal series developments of differential operators indexed over rooted trees, and can be used to represent a large class of numerical methods. The theory of backward error analysis for differential equations has a particularly nice description when applied to methods represented by Butcher series. For the study of differential equations evolving on more general manifolds, a generalization of Butcher series has been introduced, called the Lie–Butcher series. This paper presents the theory of backward error analysis for methods based on Lie–Butcher series.

Keywords

Backward error analysis Butcher series Hopf algebras Lie group integrators Lie–Butcher series Rooted trees Substitution law 

Mathematics Subject Classification (2010)

65L05 65L06 37C10 

References

  1. 1.
    G. Benettin, A. Giorgilli, On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms, J. Stat. Phys. 74(5), 1117–1143 (1994). MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    C. Brouder, Runge–Kutta methods and renormalization, Eur. Phys. J. C, Part. Fields 12(3), 521–534 (2000). CrossRefGoogle Scholar
  3. 3.
    J.C. Butcher, An algebraic theory of integration methods, Math. Comput. 26(117), 79–106 (1972). MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    J.C. Butcher, Numerical Methods for Ordinary Differential Equations, 2nd edn. (Wiley, New York, 2008). MATHCrossRefGoogle Scholar
  5. 5.
    D. Calaque, K. Ebrahimi-Fard, D. Manchon, Two interacting Hopf algebras of trees: A Hopf-algebraic approach to composition and substitution of B-series, Adv. Appl. Math. 47(2), 282–308 (2011). MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    F. Chapoton, Rooted trees and an exponential-like series, arXiv:math/0209104 (2002).
  7. 7.
    P. Chartier, E. Hairer, G. Vilmart, A substitution law for B-series vector fields, Technical Report 5498, INRIA, 2005. Google Scholar
  8. 8.
    P. Chartier, E. Hairer, G. Vilmart, Numerical integrators based on modified differential equations, Math. Comput. 76(260), 1941–1954 (2007). MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    P. Chartier, E. Hairer, G. Vilmart, Algebraic structures of B-series, Found. Comput. Math. 10(4), 407–427 (2010). MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    P. Chartier, A. Murua, An algebraic theory of order, Modél. Math. Anal. Numér. 43(4), 607–630 (2009). MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    A. Connes, D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Commun. Math. Phys. 199(1), 203–242 (1998). MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    K. Ebrahimi-Fard, J.M. Gracia-Bondía, F. Patras, A Lie theoretic approach to renormalization, Commun. Math. Phys. 276(2), 519–549 (2007). MATHCrossRefGoogle Scholar
  13. 13.
    K. Ebrahimi-Fard, A. Lundervold, D. Manchon, H. Munthe-Kaas, J.E. Vatne, On the post-Lie operad, Preprint, 2011. Google Scholar
  14. 14.
    S. Faltinsen, Backward error analysis for Lie-group methods, BIT Numer. Math. 40(4), 652–670 (2000). MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    L. Foissy, Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson–Schwinger equations, Adv. Math. 218(1), 136–162 (2008). MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    E. Hairer, Backward analysis of numerical integrators and symplectic methods, Ann. Numer. Math. 1(1–4), 107–132 (1994). MathSciNetMATHGoogle Scholar
  17. 17.
    E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration, 2nd edn. (Springer, Berlin, 2006). MATHGoogle Scholar
  18. 18.
    E. Hairer, G. Wanner, On the Butcher group and general multi-value methods, Computing 13(1), 1–15 (1974). MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    A. Iserles, H. Munthe-Kaas, S.P. Nørsett, A. Zanna, Lie-group methods, Acta Numer. 9, 215–365 (2000). CrossRefGoogle Scholar
  20. 20.
    J.L. Loday, Cyclic Homology, 2nd edn. (Springer, Berlin, 1997). Google Scholar
  21. 21.
    J.L. Loday, M.O. Ronco, Combinatorial Hopf algebras, Clay Math. Proc. 11, 347–383 (2010). MathSciNetGoogle Scholar
  22. 22.
    A. Lundervold, H. Munthe-Kaas, Hopf algebras of formal diffeomorphisms and numerical integration on manifolds, Contemp. Math. 539, 295–324 (2011). MathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Lundervold, H. Munthe-Kaas, On algebraic structures of numerical integration on vector spaces and manifolds, arXiv:1112.4465 (2011).
  24. 24.
    D. Manchon, Hopf algebras in renormalisation, in Handbook of Algebra, vol. 5, ed. by M. Hazewinkel (North-Holland, Amsterdam, 2008), pp. 365–427. Google Scholar
  25. 25.
    H. Munthe-Kaas, Lie–Butcher theory for Runge–Kutta methods, BIT Numer. Math. 35(4), 572–587 (1995). MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    H. Munthe-Kaas, Runge–Kutta methods on Lie groups, BIT Numer. Math. 38(1), 92–111 (1998). MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    H. Munthe-Kaas, A. Lundervold, On post-Lie algebras, Lie–Butcher series and moving frames, arXiv:1203.4738 (2012).
  28. 28.
    H. Munthe-Kaas, W. Wright, On the Hopf algebraic structure of Lie group integrators, Found. Comput. Math. 8(2), 227–257 (2008). MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    A. Murua, Formal series and numerical integrators, Part I: Systems of ODEs and symplectic integrators, Appl. Numer. Math. 29(2), 221–251 (1999). MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    A. Murua, The Hopf algebra of rooted trees, free Lie algebras, and Lie series, Found. Comput. Math. 6(4), 387–426 (2006). MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    B. Owren, A. Marthinsen, Runge–Kutta methods adapted to manifolds and based on rigid frames, BIT Numer. Math. 39(1), 116–142 (1999). MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    S. Reich, Backward error analysis for numerical integrators, SIAM J. Numer. Anal. 36(5), 1549–1570 (1999). MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    C. Reutenauer, Free Lie Algebras (Oxford University Press, Oxford, 1993). MATHGoogle Scholar
  34. 34.
    B. Vallette, Homology of generalized partition posets, J. Pure Appl. Algebra 208(2), 699–725 (2007). MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© SFoCM 2012

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of MathematicsUniversity of BergenBergenNorway

Personalised recommendations