Skip to main content
Log in

ENO Reconstruction and ENO Interpolation Are Stable

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We prove that the ENO reconstruction and ENO interpolation procedures are stable in the sense that the jump of the reconstructed ENO point values at each cell interface has the same sign as the jump of the underlying cell averages across that interface. Moreover, we prove that the size of these jumps after reconstruction relative to the jump of the underlying cell averages is bounded. Similar sign properties and the boundedness of the jumps hold for the ENO interpolation procedure. These estimates, which are shown to hold for ENO reconstruction and interpolation of arbitrary order of accuracy and on nonuniform meshes, indicate a remarkable rigidity of the piecewise polynomial ENO procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S. Amat, F. Arandiga, A. Cohen, R. Donat, Tensor product multiresolution with error control, Signal Process., 82, 587–608 (2002).

    Article  MATH  Google Scholar 

  2. F. Arandiga, A. Cohen, R. Donat, N. Dyn, Interpolation and approximation of piecewise smooth functions, SIAM J. Numer. Anal. 43(1), 41–57 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Arandiga, A. Cohen, R. Donat, N. Dyn, B. Matei, Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques, Appl. Comput. Harmon. Anal., 24, 225–250 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Baraniuk, R. Claypoole, G.M. Davis, W. Sweldens, Nonlinear wavelet transforms for image coding via lifting, IEEE Trans. Image Process., 12, 1449–1459 (2003).

    Article  MathSciNet  Google Scholar 

  5. M. Berzins, Adaptive polynomial interpolation on evenly spaced meshes, SIAM Rev. 49(4), 604–627 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Chan, H.M. Zhou, ENO-wavelet transforms for piecewise smooth functions, SIAM J. Numer. Anal., 40(4), 1369–1404 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Cohen, N. Dyn, M. Matel, Quasilinear subdivison schemes with applications to ENO interpolation, Appl. Comput. Harmon. Anal., 15, 89–116 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  8. U.S. Fjordholm, S. Mishra, E. Tadmor, Entropy stable ENO scheme, in Hyperbolic Problem: Theory, Numerics and Applications. Proc. of HYP2010—the 13th International Conference on Hyperbolic Problems Held in Beijing (2012, to appear).

    Google Scholar 

  9. U.S. Fjordholm, S. Mishra, E. Tadmor, Arbitrarily high-order essentially non-oscillatory entropy stable schemes for systems of conservation laws, SIAM J. Numer. Anal. (in press).

  10. A. Harten, ENO schemes with subcell resolution, J. Comput. Phys. 83, 148–184 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Harten, Recent developments in shock-capturing schemes, in Proc. International Congress of Mathematicians, vols. I, II, Kyoto, 1990 (Math. Soc. Japan, Tokyo, 1991), pp. 1549–1559.

    Google Scholar 

  12. A. Harten, Multi-resolution analysis for ENO schemes, in Algorithmic Trends in Computational Fluid Dynamics (1991) (Springer, New York, 1993), pp. 287–302.

    Chapter  Google Scholar 

  13. A. Harten, Adaptive multiresolution schemes for shock computations, J. Comput. Phys. 115(2), 319–338 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Harten, Multiresolution representation of cell-averaged data: a promotional review, in Signal and Image Representation in Combined Spaces. Wavelet Anal. Appl., vol. 7 (Academic Press, San Diego, 1998), pp. 361–391.

    Chapter  Google Scholar 

  15. A. Harten, B. Engquist, S. Osher, S.R. Chakravarty, Some results on high-order accurate essentially non-oscillatory schemes, Appl. Numer. Math. 2, 347–377 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Harten, B. Engquist, S. Osher, S.R. Chakravarty, Uniformly high order accurate essentially non-oscillatory schemes, J. Comput. Phys. 71(2), 231–303 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126, 202–226 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Levy, G. Puppo, G. Russo, Central WENO schemes for hyperbolic systems of conservation laws, Math. Model. Numer. Anal. 33, 547–571 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Matei, Méthodes multirésolution non-linéaires- applications au traitement d’image. Ph.D. thesis, University Paris VI (2002).

  20. J. Qiu, C.-W. Shu, On the construction, comparison, and local characteristic decompositions for high order central WENO schemes, J. Comput. Phys. 183, 187–209 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  21. C.W. Shu, Numerical experiments on the accuracy of ENO and modified ENO schemes, J. Sci. Comput. 5(2), 127–149 (1990).

    Article  MATH  Google Scholar 

  22. C.W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE Technical report, NASA, 1997.

  23. C.W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory schemes—II, J. Comput. Phys. 83, 32–78 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21, 995–1011 (1984).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

S.M. thanks Prof. Mike Floater of CMA, Oslo for useful discussions. The research of E.T. was supported by grants from the National Science Foundation, DMS#10-08397, and the Office of Naval Research, ONR#N000140910385 and #000141210318.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eitan Tadmor.

Additional information

Communicated by Nira Dyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fjordholm, U.S., Mishra, S. & Tadmor, E. ENO Reconstruction and ENO Interpolation Are Stable. Found Comput Math 13, 139–159 (2013). https://doi.org/10.1007/s10208-012-9117-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-012-9117-9

Keywords

Mathematics Subject Classification

Navigation