Skip to main content
Log in

A Mayer–Vietoris Formula for Persistent Homology with an Application to Shape Recognition in the Presence of Occlusions

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

In algebraic topology it is well known that, using the Mayer–Vietoris sequence, the homology of a space X can be studied by splitting X into subspaces A and B and computing the homology of A, B, and AB. A natural question is: To what extent does persistent homology benefit from a similar property? In this paper we show that persistent homology has a Mayer–Vietoris sequence that is generally not exact but only of order 2. However, we obtain a Mayer–Vietoris formula involving the ranks of the persistent homology groups of X, A, B, and AB plus three extra terms. This implies that persistent homological features of A and B can be found either as persistent homological features of X or of AB. As an application of this result, we show that persistence diagrams are able to recognize an occluded shape by showing a common subset of points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. S. Biasotti, L. De Floriani, B. Falcidieno, P. Frosini, D. Giorgi, C. Landi, L. Papaleo, M. Spagnuolo, Describing shapes by geometrical-topological properties of real functions, ACM Comput. Surv. 40(4), 1–87 (2008).

    Article  Google Scholar 

  2. G. Carlsson, Topology and data, Bull. Am. Math. Soc. 46(2), 255–308 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Cerri, B. Di Fabio, M. Ferri, P. Frosini, C. Landi, Betti numbers in multidimensional persistent homology are stable functions, Technical Report 2923, Univ. of Bologna, 2010. http://amsacta.cib.unibo.it/2923/.

  4. J. Cho, J. Choi, Contour-based partial object recognition using symmetry in image databases, in SAC ’05: Proceedings of the 2005 ACM Symposium on Applied Computing (ACM, New York, 2005), pp. 1190–1194.

    Chapter  Google Scholar 

  5. D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stability of persistence diagrams, Discrete Comput. Geom. 37(1), 103–120 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. d’Amico, P. Frosini, C. Landi, Using matching distance in size theory: A survey, Int. J. Imaging Syst. Technol. 16(5), 154–161 (2006).

    Article  Google Scholar 

  7. M. d’Amico, P. Frosini, C. Landi, Natural pseudo-distance and optimal matching between reduced size functions, Acta Appl. Math. 109(2), 527–554 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Delfinado, H. Edelsbrunner, An incremental algorithm for Betti numbers of simplicial complexes, in SCG ’93: Proceedings of the Ninth Annual Symposium on Computational Geometry (ACM, New York, 1993), pp. 232–239.

    Chapter  Google Scholar 

  9. B. Di Fabio, C. Landi, F. Medri, Recognition of occluded shapes using size functions, in Image Analysis and Processing—ICIAP 2009. LNCS, vol. 5716 (Springer, Berlin, 2009), pp. 642–651.

    Chapter  Google Scholar 

  10. H. Edelsbrunner, J. Harer, Persistent homology—a survey, in Surveys on Discrete and Computational Geometry. Contemp. Math., vol. 453 (Amer. Math. Soc., Providence, 2008), pp. 257–282.

    Google Scholar 

  11. S. Eilenberg, N. Steenrod, Foundations of Algebraic Topology (Princeton University Press, Princeton, 1952).

    MATH  Google Scholar 

  12. P. Frosini, Measuring shapes by size functions, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, February, vol. 1607, ed. by D.P. Casasent (1992), pp. 122–133.

    Google Scholar 

  13. P. Frosini, C. Landi, Size functions and formal series, Appl. Algebra Eng. Commun. Comput. 12(4), 327–349 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Ghosh, N. Petkov, Robustness of shape descriptors to incomplete contour representations, IEEE Trans. Pattern Anal. Mach. Intell. 27, 1793–1804 (2005).

    Article  Google Scholar 

  15. A. Hatcher, Algebraic Topology (Cambridge University Press, London, 2002).

    MATH  Google Scholar 

  16. J.-R. Höynck, M. Ohm, Shape retrieval with robustness against partial occlusion, in Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 2003 (ICASSP ’03), vol. 3 (2003), pp. 593–596.

    Google Scholar 

  17. G.M. Kelly, The exactness of Čech homology over a vector space, Math. Proc. Camb. Philos. Soc. 57(02), 428–429 (1961).

    Article  Google Scholar 

  18. G. Kovács, R. Vogels, G.A. Orban, Selectivity of macaque inferior temporal neurons for partially occluded shapes, J. Neurosci. 15(3), 1984–1997 (1995).

    Google Scholar 

  19. C. Landi, P. Frosini, New pseudodistances for the size function space, in Proceedings SPIE, Vision Geometry VI, vol. 3168, ed. by R.A. Melter, A.Y. Wu, L.J. Latecki (1997), pp. 52–60.

    Google Scholar 

  20. S. Merino, D. Boltcheva, J.-C. Léon, F. Hétroy, Constructive Mayer–Vietoris algorithm: Computing the homology of unions of simplicial complexes, Technical Report RR-7471, INRIA, 2010.

  21. G. Mori, S. Belongie, J. Malik, Shape contexts enable efficient retrieval of similar shapes, in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), vol. 1 (2001), pp. 723–730.

    Google Scholar 

  22. http://www.imageprocessingplace.com/root_files_V3/image_databases.htm.

  23. K.B. Sun, B.J. Super, Classification of contour shapes using class segment sets, in CVPR ’05: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2 (IEEE Computer Society, Washington, 2005), pp. 727–733.

    Google Scholar 

  24. M. Tanase, R.C. Veltkamp, Part-based shape retrieval, in MULTIMEDIA ’05: Proceedings of the 13th Annual ACM International Conference on Multimedia (ACM, New York, 2005), pp. 543–546.

    Chapter  Google Scholar 

  25. R.C. Veltkamp, Shape matching: Similarity measures and algorithms, in Proc. of Shape Modeling International (2001), pp. 188–197.

    Google Scholar 

  26. A. Zomorodian, G. Carlsson, Localized homology, Comput. Geom. 41(3), 126–148 (2008).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Landi.

Additional information

Communicated by Herbert Edelsbrunner.

Dedicated to Filippo and Marco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Fabio, B., Landi, C. A Mayer–Vietoris Formula for Persistent Homology with an Application to Shape Recognition in the Presence of Occlusions. Found Comput Math 11, 499–527 (2011). https://doi.org/10.1007/s10208-011-9100-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-011-9100-x

Keywords

Mathematics Subject Classification (2000)2010

Navigation