Skip to main content
Log in

Gromov–Wasserstein Distances and the Metric Approach to Object Matching

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper discusses certain modifications of the ideas concerning the Gromov–Hausdorff distance which have the goal of modeling and tackling the practical problems of object matching and comparison. Objects are viewed as metric measure spaces, and based on ideas from mass transportation, a Gromov–Wasserstein type of distance between objects is defined. This reformulation yields a distance between objects which is more amenable to practical computations but retains all the desirable theoretical underpinnings. The theoretical properties of this new notion of distance are studied, and it is established that it provides a strict metric on the collection of isomorphism classes of metric measure spaces. Furthermore, the topology generated by this metric is studied, and sufficient conditions for the pre-compactness of families of metric measure spaces are identified. A second goal of this paper is to establish links to several other practical methods proposed in the literature for comparing/matching shapes in precise terms. This is done by proving explicit lower bounds for the proposed distance that involve many of the invariants previously reported by researchers. These lower bounds can be computed in polynomial time. The numerical implementations of the ideas are discussed and computational examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Alestalo, D.A. Trotsenko, J. Väisälä, Isometric approximation, Isr. J. Math. 125, 61–82 (2001).

    Article  MATH  Google Scholar 

  2. L. Ambrosio, P. Tilli, Topics on Analysis in Metric Spaces. Oxford Lecture Series in Mathematics and Its Applications, vol. 25 (Oxford University Press, Oxford, 2004).

    MATH  Google Scholar 

  3. M. Ankerst, G. Kastenmüller, H.-P. Kriegel, T. Seidl, 3D shape histograms for similarity search and classification in spatial databases, in SSD ’99: Proceedings of the 6th International Symposium on Advances in Spatial Databases, London, UK (Springer, Berlin, 1999), pp. 207–226.

    Google Scholar 

  4. S. Belongie, J. Malik, J. Puzicha, Shape matching and object recognition using shape contexts, IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002).

    Article  Google Scholar 

  5. S. Berchtold, Geometry-based search of similar parts. Ph.D. thesis, University of Munich, Germany (1998).

  6. P. Billingsley, Probability and Measure. Wiley Series in Probability and Mathematical Statistics, 3rd edn. (Wiley, New York, 1995).

    MATH  Google Scholar 

  7. G.S. Bloom, A counterexample to a theorem of S. Piccard, J. Comb. Theory, Ser. A 22(3), 378–379 (1977).

    Article  MATH  Google Scholar 

  8. F.L. Bookstein, The study of shape transformation after D’Arcy Thompson, Math. Biosci. 34, 177–219 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  9. F.L. Bookstein, The Measurement of Biological Shape and Shape Change (Springer, Berlin, 1978).

    MATH  Google Scholar 

  10. F.L. Bookstein, Morphometric Tools for Landmark Data (Cambridge University Press, Cambridge, 1997). Geometry and biology, reprint of the 1991 original.

    Google Scholar 

  11. M. Boutin, G. Kemper, On reconstructing n-point configurations from the distribution of distances or areas, Adv. Appl. Math. 32(4), 709–735 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Brinkman, P.J. Olver, Invariant histograms. Am. Math. Monthly (2011). doi:10.1007/s11263-009-0301-6

    Google Scholar 

  13. A. Bronstein, M. Bronstein, R. Kimmel, Topology-invariant similarity of nonrigid shapes, Int. J. Comput. Vis. 81(3), 281–301 (2009).

    Article  Google Scholar 

  14. A. Bronstein, M. Bronstein, R. Kimmel, M. Mahmoudi, G. Sapiro, A Gromov–Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching (submitted).

  15. A. Bronstein, M. Bronstein, A. Bruckstein, R. Kimmel, Partial similarity of objects, or how to compare a centaur to a horse, Int. J. Comput. Vis. 84(2), 163–183 (2009).

    Article  Google Scholar 

  16. A. Bronstein, M. Bronstein, R. Kimmel, Three-dimensional face recognition, Int. J. Comput. Vis. 64(1), 5–30 (2005).

    Article  Google Scholar 

  17. A. Bronstein, M. Bronstein, R. Kimmel, Efficient computation of isometry-invariant distances between surfaces, SIAM J. Sci. Comput. 28(5), 1812–1836 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  18. A.M. Bronstein, M.M. Bronstein, R. Kimmel, Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching, Proc. Natl. Acad. Sci. USA 103(5), 1168–1172 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Bronstein, M. Bronstein, R. Kimmel, Calculus of nonrigid surfaces for geometry and texture manipulation, IEEE Trans. Vis. Comput. Graph. 13(5), 902–913 (2007).

    Google Scholar 

  20. A. Bronstein, M. Bronstein, R. Kimmel, Expression-invariant representations of faces, IEEE Trans. Pattern Anal. Mach. Intell. 16(1), 1042–1053 (2007).

    MathSciNet  Google Scholar 

  21. A. Bronstein, M. Bronstein, R. Kimmel, On isometric embedding of facial surfaces into S 3, in Scale Space (Springer, Berlin, 2004).

    Google Scholar 

  22. D. Burago, Y. Burago, S. Ivanov, A Course in Metric Geometry. AMS Graduate Studies in Math., vol. 33 (American Mathematical Society, Providence, 2001).

    MATH  Google Scholar 

  23. B. Bustos, D.A. Keim, D. Saupe, T. Schreck, D.V. Vranić, Feature-based similarity search in 3D object databases, ACM Comput. Surv. 37(4), 345–387 (2005).

    Article  Google Scholar 

  24. G. Carlsson, F. Mémoli, Characterization, stability and convergence of hierarchical clustering methods, J. Mach. Learn. Res. 11(Apr), 1425–1470 (2010).

    MathSciNet  Google Scholar 

  25. T.K. Carne, The geometry of shape spaces, Proc. Lond. Math. Soc. (3) 61(2), 407–432 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  26. I. Chavel, Riemannian Geometry: A Modern Introduction (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  27. F. Chazal, D. Cohen-Steiner, L. Guibas, F. Mémoli, S. Oudot, Gromov–Hausdorff stable signatures for shapes using persistence, in Proc. of SGP (2009).

    Google Scholar 

  28. G.E. Christensen, R.D. Rabbitt, M.I. Miller, 3D brain mapping using a deformable neuroanatomy, Phys. Med. Biol. 39(3), 609–618 (1994).

    Article  Google Scholar 

  29. G.E. Christensen, R.D. Rabbitt, M.I. Miller, Deformable templates using large deformation kinematics, IEEE Trans. Image Process. 5(10), 1435–1447 (1996).

    Article  Google Scholar 

  30. U. Clarenz, M. Rumpf, A. Telea, Robust feature detection and local classification for surfaces based on moment analysis, IEEE Trans. Vis. Comput. Graph. 10(5), 516–524 (2004).

    Article  Google Scholar 

  31. S.D. Cohen, L.J. Guibas, The earth mover’s distance under transformation sets, in ICCV (2) (1999), pp. 1076–1083.

    Google Scholar 

  32. T.F. Cox, M.A.A. Cox, Multidimensional Scaling. Monographs on Statistics and Applied Probability, vol. 59 (Chapman & Hall, London, 1994).

    MATH  Google Scholar 

  33. M. d’Amico, P. Frosini, C. Landi, Natural pseudo-distance and optimal matching between reduced size functions. Technical report 66, DISMI, Univ. degli Studi di Modena e Reggio Emilia, Italy (2005).

  34. M. d’Amico, P. Frosini, C. Landi, Using matching distance in size theory: a survey, Int. J. Imaging Syst. Technol. 16(5), 154–161 (2006).

    Article  Google Scholar 

  35. D.B. Rusch, A.L. Halpern, G. Sutton, K.B. Heidelberg, S. Williamson, et al., The sorcerer ii global ocean sampling expedition: Northwest Atlantic through Eastern Tropical Pacific, PLoS Biol. 5(3) (2007) cover.

    Article  Google Scholar 

  36. R.M. Dudley, Real Analysis and Probability. Cambridge Studies in Advanced Mathematics, vol. 74 (Cambridge University Press, Cambridge, 2002). Revised reprint of the 1989 original.

    Book  MATH  Google Scholar 

  37. A. Elad (Elbaz), R. Kimmel, On bending invariant signatures for surfaces, IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1285–1295 (2003).

    Article  Google Scholar 

  38. P. Frosini, A distance for similarity classes of submanifolds of Euclidean space, Bull. Aust. Math. Soc. 42(3), 407–416 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  39. P. Frosini, Omotopie e invarianti metrici per sottovarieta di spazi euclidei (teoria della taglia). PhD thesis, University of Florence, Italy (1990).

  40. P. Frosini, M. Mulazzani, Size homotopy groups for computation of natural size distances, Bull. Belg. Math. Soc. Simon Stevin 6(3), 455–464 (1999).

    MathSciNet  MATH  Google Scholar 

  41. W. Gangbo, R.J. McCann, Shape recognition via Wasserstein distance, Q. Appl. Math. 58(4), 705–737 (2000).

    MathSciNet  MATH  Google Scholar 

  42. N. Gelfand, N.J. Mitra, L. Guibas, H. Pottmann, Robust global registration, in SGP ’05: Proceedings of the Third Eurographics Symposium on Geometry Processing (2005), pp. 197–206.

    Google Scholar 

  43. N. Giorgetti, Glpkmex: A matlab mex interface for the glpk library. http://www.dii.unisi.it/cohes/tools/mex/downloads/glpkmex/index.html.

  44. C.R. Givens, R.M. Shortt, A class of Wasserstein metrics for probability distributions, Mich. Math. J. 31(2), 231–240 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Glaunès, M. Vaillant, M.I. Miller, Landmark matching via large deformation diffeomorphisms on the sphere, J. Math. Imaging Vis. 20(1–2), 179–200 (2004).

    Article  Google Scholar 

  46. A. Gray, Tubes. Progress in Mathematics, vol. 221, 2nd edn. (Birkhäuser, Basel, 2004). With a preface by Vicente Miquel.

    Google Scholar 

  47. U. Grenander, Pattern Synthesis. Lectures in Pattern Theory, vol. 1. Applied Mathematical Sciences, vol. 18 (Springer, New York, 1976).

    Google Scholar 

  48. U. Grenander, General pattern theory. Oxford Mathematical Monographs (Clarendon Press, New York, 1993). A Mathematical Study of Regular Structures, Oxford Science Publications.

    Google Scholar 

  49. U. Grenander, M.I. Miller, Computational anatomy: an emerging discipline, Q. Appl. Math. LVI(4), 617–694 (1998).

    MathSciNet  Google Scholar 

  50. A. Greven, P. Pfaffelhuber, A. Winter, Convergence in distribution of random metric measure spaces (Λ-coalescent measure trees), Probab. Theory Relat. Fields 145(1–2), 285–322 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  51. C. Grigorescu, N. Petkov, Distance sets for shape filters and shape recognition, IEEE Trans. Image Process. 12(10), 1274–1286 (2003).

    Article  MathSciNet  Google Scholar 

  52. M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics, vol. 152 (Birkhäuser, Boston, 1999).

    MATH  Google Scholar 

  53. A.B. Hamza, H. Krim, Geodesic object representation and recognition, in Lecture Notes in Computer Science, vol. 2886 (Springer, Berlin, 2003), pp. 378–387.

    Google Scholar 

  54. M. Hilaga, Y. Shinagawa, T. Kohmura, T.L. Kunii, Topology matching for fully automatic similarity estimation of 3D shapes, in SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (ACM, New York, 2001), pp. 203–212.

    Chapter  Google Scholar 

  55. J.R. Hoffman, R.P.S. Mahler, Multitarget miss distance via optimal assignment, IEEE Trans. Syst. Man Cybern., Part A 34(3), 327–336 (2004).

    Article  Google Scholar 

  56. L. Holm, C. Sander, Protein structure comparison by alignment of distance matrices, J. Mol. Biol. 233(1), 123–138 (1993).

    Article  Google Scholar 

  57. D.P. Huttenlocher, G.A. Klanderman, W.J. Rucklidge, Comparing images using the Hausdorff distance, IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993).

    Article  Google Scholar 

  58. M. Jin, J. Kim, F. Luo, X. Gu, Discrete surface Ricci flow, IEEE Trans. Vis. Comput. Graph. 14(5), 1030–1043 (2008).

    Article  Google Scholar 

  59. M. Jin, W. Zeng, F. Luo, X. Gu, Computing Teichmüller shape space, IEEE Trans. Vis. Comput. Graph. 15(3), 504–517 (2008).

    Google Scholar 

  60. A. Johnson, Spin-images: a representation for 3D surface matching. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, August 1997.

  61. N.J. Kalton, M.I. Ostrovskii, Distances between Banach spaces, Forum Math. 11(1), 17–48 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  62. G. Kastenmüller, H.P. Kriegel, T. Seidl, Similarity search in 3D protein databases, in Proc. GCB (1998).

    Google Scholar 

  63. D.G. Kendall, Shape manifolds, procrustean metrics, and complex projective spaces, Bull. Lond. Math. Soc. 16(2), 81–121 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  64. M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories. de Gruyter Expositions in Mathematics, vol. 29 (Walter de Gruyter & Co., Berlin, 2000).

    MATH  Google Scholar 

  65. O. Klein, R.C. Veltkamp, Approximation algorithms for computing the earth mover’s distance under transformations, in ISAAC (2005), pp. 1019–1028.

    Google Scholar 

  66. R. Kolodny, N. Linial, Approximate protein structural alignment in polynomial time, Proc. Natl. Acad. Sci. USA 101, 12201–12206 (2004).

    Article  Google Scholar 

  67. W.A. Koppensteiner, P. Lackner, M. Wiederstein, M.J. Sippl, Characterization of novel proteins based on known protein structures, J. Mol. Biol. 296(4), 1139–1152 (2000).

    Article  Google Scholar 

  68. H.L. Le, D.G. Kendall, The Riemannian structure of Euclidean shape spaces: a novel environment for statistics, Ann. Stat. 21(3), 1225–1271 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  69. M. Leordeanu, M. Hebert, A spectral technique for correspondence problems using pairwise constraints, in International Conference of Computer Vision (ICCV), October, vol. 2 (2005), pp. 1482–1489.

    Google Scholar 

  70. H. Ling, D.W. Jacobs, Using the inner-distance for classification of articulated shapes, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2 (2005), pp. 719–726.

    Chapter  Google Scholar 

  71. J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, in Proceedings of the CACSD Conference, Taipei, Taiwan (2004).

    Google Scholar 

  72. L. Lovász, M.D. Plummer, Matching Theory. North-Holland Mathematics Studies, vol. 121, Annals of Discrete Mathematics, vol. 29 (North-Holland Publishing Co., Amsterdam, 1986).

    MATH  Google Scholar 

  73. D.G. Luenberger, Linear and Nonlinear Programming, 2nd edn. (Kluwer Academic, Boston, 2003).

    MATH  Google Scholar 

  74. S. Manay, D. Cremers, B.W. Hong, A.J. Yezzi, S. Soatto, Integral invariants for shape matching, IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1602–1618 (2006).

    Article  Google Scholar 

  75. F. Mémoli, On the use of Gromov-Hausdorff distances for shape comparison, in Proceedings of Point Based Graphics, Prague, Czech Republic (2007).

    Google Scholar 

  76. F. Mémoli, Gromov–Hausdorff distances in Euclidean spaces, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, June (2008), pp. 1–8.

    Chapter  Google Scholar 

  77. F. Mémoli, Spectral Gromov–Wasserstein distances for shape matching, in Workshop on Non-rigid Shape Analysis and Deformable Image Alignment (ICCV Workshop, NORDIA’09), October 2009.

    Google Scholar 

  78. F. Mémoli, Estimation of distance functions and geodesics and its use for shape comparison and alignment: theoretical and computational results. PhD thesis, Electrical and Computer Engineering Department, University of Minnesota, May 2005.

  79. F. Mémoli, Spectral Gromov–Wasserstein distances and related approaches, Appl. Comput. Harmon. Anal. (2010). doi:10.1016/j.acha.2010.09.005.

    Google Scholar 

  80. F. Mémoli, G. Sapiro, Comparing point clouds, in SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (2004), pp. 32–40.

    Chapter  Google Scholar 

  81. F. Mémoli, G. Sapiro, A theoretical and computational framework for isometry invariant recognition of point cloud data, Found. Comput. Math. 5(3), 313–347 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  82. P.W. Michor, D. Mumford, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc. 8(1), 1–48 (2004).

    MathSciNet  Google Scholar 

  83. M.I. Miller, L. Younes, Group actions, homeomorphisms, and matching: a general framework, Int. J. Comput. Vis. 41(1–2), 61–84 (2001).

    Article  MATH  Google Scholar 

  84. M.I. Miller, A. Trouvé, L. Younes, On the metrics and Euler-Lagrange equations of computational anatomy, Annu. Rev. Biomed. Eng. 4(1), 375–405 (2002).

    Article  Google Scholar 

  85. D. Mumford, Mathematical theories of shape: do they model perception? Proc. SPIE 1570, 2–10 (1991).

    Article  Google Scholar 

  86. R. Osada, T. Funkhouser, B. Chazelle, D. Dobkin, Shape distributions, ACM Trans. Graph. 21(4), 807–832 (2002).

    Article  Google Scholar 

  87. M. Ovsjanikov, Q. Mérigot, F. Mémoli, L. Guibas, in One Point Isometric Matching with the Heat Kernel, Lyon, France (2010), pp. 1555–1564.

    Google Scholar 

  88. C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity (Dover, Mineola, 1998). Corrected reprint of the 1982 original.

    MATH  Google Scholar 

  89. P.M. Pardalos, H. Wolkowicz (eds.), Quadratic Assignment and Related Problems. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 16 (American Mathematical Society, Providence, 1994). Papers from the workshop held at Rutgers University, New Brunswick, New Jersey, May 20–21, 1993.

    MATH  Google Scholar 

  90. Protein Data Bank. RCSB, Protein Data Bank. Rutgers University and UCSD. http://www.rcsb.org/pdb/home/home.do.

  91. H. Pottmann, J. Wallner, Q. Huang, Y.-L. Yang, Integral invariants for robust geometry processing, Comput. Aided Geom. Des. 26(1), 37–60 (2008).

    Article  MathSciNet  Google Scholar 

  92. D. Raviv, A. Bronstein, M. Bronstein, R. Kimmel, Symmetries of non-rigid shapes, in IEEE 11th International Conference on Computer Vision, October 2007 (2007), pp. 1–7.

    Chapter  Google Scholar 

  93. G. Reeb, Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction numérique, C. R. Math. Acad. Sci. Paris 222, 847–849 (1946).

    MathSciNet  MATH  Google Scholar 

  94. M. Reuter, F.E. Wolter, N. Peinecke, Laplace-spectra as fingerprints for shape matching, in SPM ’05: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, New York, NY, USA (ACM Press, New York, 2005), pp. 101–106.

    Chapter  Google Scholar 

  95. M. Riser, Protein docking using local shape distributions. Master’s thesis, ETH Zürich, Switzerland, September 2004.

  96. Y. Rubner, C. Tomasi, L. Guibas, The Earth mover’s distance as a metric for image retrieval, Int. J. Comput. Vis. 40(2), 99–121 (2000).

    Article  MATH  Google Scholar 

  97. M. Ruggeri, D. Saupe, Isometry-invariant matching of point set surfaces, in Proceedings Eurographics 2008 Workshop on 3D Object Retrieval (2008).

    Google Scholar 

  98. M. Rumpf, B. Wirth, An elasticity-based covariance analysis of shapes, Int. J. Comput. Vis. 92(3), 281–295 (2009).

    Article  MathSciNet  Google Scholar 

  99. S. Rusinkiewicz, M. Levoy, Efficient variants of the icp algorithm, in 3DIM (IEEE Comput. Soc., Los Alamitos, 2001), pp. 145–152.

    Google Scholar 

  100. R.M. Rustamov, Laplace–Beltrami eigenfunctions for deformation invariant shape representation, in Symposium on Geometry Processing (2007), pp. 225–233.

    Google Scholar 

  101. T. Sakai, Riemannian geometry. Translations of Mathematical Monographs, vol. 149 (American Mathematical Society, Providence, 1996).

    MATH  Google Scholar 

  102. Y. Shi, P.M. Thompson, G.I. de Zubicaray, S.E. Rose, Z. Tu, I. Dinov, A.W. Toga, Direct mapping of hippocampal surfaces with intrinsic shape context, NeuroImage 37(3), 792–807 (2007).

    Article  Google Scholar 

  103. C.G. Small, The Statistical Theory of Shape. Springer Series in Statistics (Springer, New York, 1996).

    MATH  Google Scholar 

  104. V. Strassen, The existence of probability measures with given marginals, Ann. Math. Stat. 36, 423–439 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  105. K.T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196(1), 65–131 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  106. R.W. Sumner, J. Popovic, Mesh data from deformation transfer for triangle meshes. http://people.csail.mit.edu/sumner/research/deftransfer/data.html.

  107. D. Thompson, On Growth and Form (Cambridge University Press, Cambridge, 1917).

    Google Scholar 

  108. A. Trouvé, Diffeomorphisms groups and pattern matching in image analysis, Int. J. Comput. Vis. 28(3), 213–221 (1998).

    Article  Google Scholar 

  109. R.C. Veltkamp, Shape matching: similarity measures and algorithms, in Shape Modeling International, doi:10.1109/SMA.2001.923389.

  110. R.C. Veltkamp, L.J. Latecki, Properties and performances of shape similarity measures, in Content-Based Retrieval, ed. by T. Crawford, R.C. Veltkamp. Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, vol. 06171 (2006).

    Google Scholar 

  111. C. Villani, Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58 (American Mathematical Society, Providence, 2003).

    MATH  Google Scholar 

  112. L. Younes, Shapes and Diffeomorphisms (Springer, Berlin, 2010).

    Book  MATH  Google Scholar 

  113. L. Younes, Computable elastic distances between shapes, SIAM J. Appl. Math. 58, 565–586 (1995).

    Article  MathSciNet  Google Scholar 

  114. L. Younes, Optimal matching between shapes via elastic deformations, Image Vis. Comput. 17(5–6), 381–389 (1999).

    Article  Google Scholar 

  115. L. Younes, P.W. Michor, J. Shah, D. Mumford, A metric on shape space with explicit geodesics, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19(1), 25–57 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  116. W. Zeng, X. Yin, Y. Zeng, Y. Lai, X. Gu, D. Samaras, 3D face matching and registration based on hyperbolic Ricci flow, in CVPR Workshop on 3D Face Processing, Anchorage, Alaska, June 2008 (2008), pp. 1–8.

    Google Scholar 

  117. W. Zeng, Y. Zeng, Y. Wang, X. Yin, X. Gu, D. Samaras, 3D non-rigid surface matching and registration based on holomorphic differentials, in The 10th European Conference on Computer Vision (ECCV), Marseille, France, October 2008

    Google Scholar 

  118. Z. Zhang, Iterative point matching for registration of free-form curves and surfaces, Int. J. Comput. Vis. 13(2), 119–152 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Facundo Mémoli.

Additional information

Communicated by Peter Olver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mémoli, F. Gromov–Wasserstein Distances and the Metric Approach to Object Matching. Found Comput Math 11, 417–487 (2011). https://doi.org/10.1007/s10208-011-9093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-011-9093-5

Keywords

Mathematics Subject Classification (2000)

Navigation