Skip to main content
Log in

Finite Resolution Dynamics

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We develop a new mathematical model for describing a dynamical system at limited resolution (or finite scale), and we give precise meaning to the notion of a dynamical system having some property at all resolutions coarser than a given number. Open covers are used to approximate the topology of the phase space in a finite way, and the dynamical system is represented by means of a combinatorial multivalued map. We formulate notions of transitivity and mixing in the finite resolution setting in a computable and consistent way. Moreover, we formulate equivalent conditions for these properties in terms of graphs, and provide effective algorithms for their verification. As an application we show that the Hénon attractor is mixing at all resolutions coarser than 10−5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Arai, On hyperbolic plateaus of the Hénon map, Exp. Math. 16, 181–188 (2007).

    MathSciNet  MATH  Google Scholar 

  2. Z. Arai, K. Mischaikow, Rigorous computations of homoclinic tangencies, SIAM J. Appl. Dyn. Syst. 5, 280–292 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  3. Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka, P. Pilarczyk, A database schema for the analysis of global dynamics of multiparameter systems, SIAM J. Appl. Dyn. Syst. 8, 757–789 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Arbieto, C. Matheus, Decidability of chaos for some families of dynamical systems, Found. Comput. Math., 269–275 (2004).

  5. M. Benedicks, L. Carleson, The dynamics of the Hénon map, Ann. Math. 133, 73–169 (1991).

    Article  MathSciNet  Google Scholar 

  6. M. Benedicks, L.-S. Young, Sinai–Bowen–Ruelle measures for certain Hénon maps, Invent. Math. 112, 541–576 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Bowen, Markov partitions for Axiom A diffeomorphisms, Am. J. Math. 92, 725–747 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, vol. 470 (Springer, Berlin, 1975).

    MATH  Google Scholar 

  9. R. Bowen, D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29, 181–202 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Colli, Infinitely many coexisting strange attractors, Ann. Inst. H. Poincaré Anal. Non Linéaire 15(5), 539–579 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  11. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd edn. (MIT Press, Cambridge, 2001).

    MATH  Google Scholar 

  12. J.-P. Eckmann, H. Koch, P. Wittwer, A Computer-Assisted Proof of Universality for Area-Preserving Maps, Mem. Amer. Math. Soc., vol. 47(289) (Springer, Berlin, 1984), vi+122.

    Google Scholar 

  13. Z. Galias, Rigorous investigation of the Ikeda map by means of interval arithmetic, Nonlinearity 15, 1759–1779 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  14. S.V. Gonchenko, D.V. Turaev, L.P. Shilprimenikov, On the dynamic properties of diffeomorphisms with homoclinic tangencies, Sovrem. Mat. Prilozh. 7, 91–117 (2003).

    Google Scholar 

  15. M. Hénon, A two-dimensional mapping with a strange attractor, Commun. Math. Phys. 50, 69–77 (1976).

    Article  MATH  Google Scholar 

  16. S. Lynch Hruska, A numerical method for constructing the hyperbolic structure of complex Hénon mappings, Found. Comput. Math. 6, 427–455 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Jabłoński, M. Kulczycki, Topological transitivity, mixing and nonwandering set of subshifts of finite type—a numerical approach, Int. J. Comput. Math. 80, 671–677 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  18. M.V. Jakobson, Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Commun. Math. Phys. 81(1), 39–88 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  19. W.D. Kalies, K. Mischaikow, R.C.A.M. VanderVorst, An algorithmic approach to chain recurrence, Found. Comput. Math. 5, 409–449 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Kapela, C. Simó, Computer assisted proofs for nonsymmetric planar choreographies and for stability of the eight, Nonlinearity 20, 1241–1255 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Kapela, P. Zgliczyński, The existence of simple choreographies for the N-body problem—a computer-assisted proof, Nonlinearity 16, 1899–1918 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  22. O. Lanford, A computer-assisted proof of the Feigenbaum conjectures, Bull. Am. Math. Soc. 6, 427–434 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Luzzatto, H. Takahasi, Computable conditions for the occurrence of non-uniform hyperbolicity in families of one-dimensional maps, Nonlinearity 19, 1657–1695 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Luzzatto, W. Tucker, Non-uniformly expanding dynamics in maps with singularities and criticalities, Inst. Ht. Etudes Sci. Publ. Math. 89, 179–226 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Luzzatto, M. Viana, Positive Lyapunov exponents for Lorenz-like families with criticalities, Astérisque 261(xiii), 201–237 (2000).

    MathSciNet  Google Scholar 

  26. S. Luzzatto, I. Melbourne, F. Paccaut, The Lorenz attractor is mixing, Commun. Math. Phys. 260, 393–401 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Mischaikow, M. Mrozek, Chaos in Lorenz equations: A computer assisted proof, Bull. Am. Math. Soc. 33, 66–72 (1995).

    Article  MathSciNet  Google Scholar 

  28. R.E. Moore, Interval Analysis (Prentice-Hall, Inc., Englewood Cliffs, 1966).

    MATH  Google Scholar 

  29. M. Mrozek, Topological invariants, multivalued maps and computer assisted proofs in dynamics, Comput. Math. Appl. 32(4), 83–104 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Mrozek, An algorithm approach to the Conley index theory, J. Dyn. Differ. Equ. 11, 711–734 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Mrozek, P. Pilarczyk, The Conley index and rigorous numerics for attracting periodic orbits, in Proceedings of the Conference on Variational and Topological Methods in the Study of Nonlinear Phenomena, Pisa, 2000. Progr. Nonlinear Differential Equations Appl., vol. 49 (Birkhäuser, Boston, 2002), pp. 65–74.

    Google Scholar 

  32. L. Mora, M. Viana, Abundance of strange attractors, Acta Math. 171, 1–71 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  33. S.E. Newhouse, Diffeomorphisms with infinitely many sinks, Topology 13, 9–18 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  34. M.J. Pacifico, A. Rovella, M. Viana, Infinite-modal maps with global chaotic behavior, Ann. Math. 148, 441–484 (1998).

    Article  MathSciNet  Google Scholar 

  35. J. Palis, F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations (Cambridge University Press, Cambridge, 1993).

    MATH  Google Scholar 

  36. P. Pilarczyk, Computer assisted method for proving existence of periodic orbits, Topol. Methods Nonlinear Anal. 13, 365–377 (1999).

    MathSciNet  MATH  Google Scholar 

  37. P. Pilarczyk, Finite resolution dynamics. Software and examples, http://www.pawelpilarczyk.com/finresdyn/.

  38. P. Pilarczyk, Topological-numerical approach to the existence of periodic trajectories in ODEs, Discrete and Continuous Dynamical Systems 2003, A Supplement Volume: Dynamical Systems and Differential Equations, pp. 701–708.

  39. P. Pilarczyk, K. Stolot, Excision-preserving cubical approach to the algorithmic computation of the discrete Conley index, Topol. Appl. 155, 1149–1162 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  40. J.G. Sinaĭ, Markov partitions and U-diffeomorphisms, Funkc. Anal. Prilozh. 2, 64–89 (1968).

    Google Scholar 

  41. A. Szymczak, A combinatorial procedure for finding isolating neighbourhoods and index pairs, Proc. R. Soc. Edinb. A 127, 1075–1088 (1997).

    MathSciNet  MATH  Google Scholar 

  42. R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1, 146–160 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  43. H. Thunberg, Positive exponent in families with flat critical point, Ergod. Theory Dyn. Syst. 19, 767–807 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Tsujii, Positive Lyapunov exponents in families of one-dimensional dynamical systems, Invent. Math. 111(1), 113–137 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  45. W. Tucker, The Lorenz attractor exists, C.R. Acad. Sci. Paris, Sér. I 328, 1197–1202 (1999).

    MATH  Google Scholar 

  46. Q. Wang, L.-S. Young, Strange attractors with one direction of instability, Commun. Math. Phys. 218, 1–97 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  47. Wikipedia contributors, Aperiodic graph, Wikipedia, The Free Encyclopedia (2008), http://en.wikipedia.org/w/index.php?title=Aperiodic_graph&oldid=224030707.

  48. Wikipedia contributors, Tarjan’s strongly connected components algorithm, Wikipedia, The Free Encyclopedia (2009), http://en.wikipedia.org/w/index.php?title=Tarjan%27s_strongly_connected_components_algorithm&oldid=295022950.

  49. P. Zgliczyński, Rigorous numerics for dissipative partial differential equations. II. Periodic orbit for the Kuramoto–Sivashinsky PDE—a computer-assisted proof, Found. Comput. Math. 4, 157–185 (2004).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Pilarczyk.

Additional information

Communicated by Peter Kloeden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luzzatto, S., Pilarczyk, P. Finite Resolution Dynamics. Found Comput Math 11, 211–239 (2011). https://doi.org/10.1007/s10208-010-9083-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-010-9083-z

Keywords

Mathematics Subject Classification (2000)

Navigation