Skip to main content
Log in

Fast Linear Homotopy to Find Approximate Zeros of Polynomial Systems

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We prove a new complexity bound, polynomial on the average, for the problem of finding an approximate zero of systems of polynomial equations. The average number of Newton steps required by this method is almost linear in the size of the input (dense encoding). We show that the method can also be used to approximate several or all the solutions of non-degenerate systems, and prove that this last task can be done in running time which is linear in the Bézout number of the system and polynomial in the size of the input, on the average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.L. Allgower, K. Georg, Numerical Continuation Methods (Springer, Berlin, 1990).

    MATH  Google Scholar 

  2. G.E. Andrews, R. Askey, R. Roy, Special Functions (Cambridge University Press, Cambridge, 1999).

    MATH  Google Scholar 

  3. D.J. Bates, J.D. Hauenstein, A.J. Sommese, C. Wampler, Bertini: software for numerical algebraic geometry, available at http://www.nd.edu/~sommese/bertini.

  4. W. Baur, V. Strassen, The complexity of partial derivatives, Theor. Comput. Sci. 22(3), 317–330 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Beltrán, A continuation method to solve polynomial systems, and its complexity, Numer. Math. (2010). doi:10.1007/s00211-010-0334-3.

    Google Scholar 

  6. C. Beltrán, A. Leykin, Certified numerical homotopy tracking, to appear. arXiv:0912.0920.

  7. C. Beltrán, L.M. Pardo, On the complexity of non-universal polynomial equation solving: old and new results, in Foundations of Computational Mathematics: Santander 2005, ed. by L.-M. Pardo, A. Pinkus, E. Süli, M. Todd (Cambridge University Press, Cambridge, 2006), pp. 1–35.

    Chapter  Google Scholar 

  8. C. Beltrán, L.M. Pardo, On Smale’s 17th problem: a probabilistic positive solution, Found. Comput. Math. 8(1), 1–43 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Beltrán, L.M. Pardo, Smale’s 17th problem: average polynomial time to compute affine and projective solutions, J. Am. Math. Soc. 22, 363–385 (2009).

    Article  Google Scholar 

  10. C. Beltrán, M. Shub, Complexity of Bézout’s Theorem VII: distance estimates in the condition metric, Found. Comput. Math. 9(2), 179–195 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Beltrán, M. Shub, A note on the finite variance of the averaging function for polynomial system solving, Found. Comput. Math. 10(1), 115–125 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  12. L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines, Bull. Am. Math. Soc. (N.S.) 21(1), 1–46 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation (Springer, New York, 1998).

    Google Scholar 

  14. J. Bochnak, M. Coste, M.F. Roy, Géométrie algébrique réelle (Springer, Berlin, 1987).

    MATH  Google Scholar 

  15. C.E. Borges, L.M. Pardo, On the probability distribution of data at points in real complete intersection varieties, J. Complex. 24, 492–523 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Bürgisser, F. Cucker, On a problem posed by Steve Smale, Extended abstract in Proceedings STOC 2010, pp. 503–512. Full version: arXiv:0909.2114v5

  17. D. Castro, M. Giusti, J. Heintz, G. Matera, L.M. Pardo, The hardness of polynomial equation solving, Found. Comput. Math. 3(4), 347–420 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  18. Z. Chen, J.J. Dongarra, Condition numbers of Gaussian random matrices, SIAM J. Matrix Anal. Appl. 27(3), 603–620 (2005).

    Article  MathSciNet  Google Scholar 

  19. J.-P. Dedieu, G. Malajovich, M. Shub, Adaptative step size selection for homotopy methods to solve polynomial equations, to appear.

  20. A. Edelman, Eigenvalues and condition numbers of random matrices, Ph.D. Thesis, Math. Dept. MIT, 1989.

  21. A. Edelman, B. D Sutton, Tails of condition number distributions, SIAM J. Matrix Anal. Appl. 27(2), 547–560 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  22. R. Hartshorne, Algebraic Geometry (Springer, New York, 1977).

    MATH  Google Scholar 

  23. T. L Lee, T.Y. Li, C.H. Tsai, Hom4ps-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method, available at http://hom4ps.math.msu.edu/HOM4PS_soft.htm.

  24. A. Leykin, Numerical algebraic geometry for Macaulay2, to appear. arXiv:0911.1783.

  25. S. Lojasiewicz, Introduction to Complex Analytic Geometry (Birkhäuser, Basel, 1991).

    MATH  Google Scholar 

  26. J. Renegar, On the worst-case arithmetic complexity of approximating zeros of polynomials, J. Complex. 3(2), 90–113 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  27. I.E. Segal, R.A. Kunze, Integrals and Operators, 2nd edn. (Springer, Berlin, 1978).

    MATH  Google Scholar 

  28. M. Shub, Some remarks on Bezout’s theorem and complexity theory, in From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA), vol. 1990 (Springer, New York, 1993), pp. 443–455.

    Google Scholar 

  29. M. Shub, Complexity of Bézout’s theorem. VI: Geodesics in the condition (number) metric, Found. Comput. Math. 9(2), 171–178 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Shub, S. Smale, Complexity of Bézout’s theorem. I. Geometric aspects, J. Am. Math. Soc. 6(2), 459–501 (1993).

    MATH  MathSciNet  Google Scholar 

  31. M. Shub, S. Smale, Complexity of Bezout’s theorem. II. Volumes and probabilities, in Computational Algebraic Geometry (Nice), vol. 1992 (Birkhäuser, Boston, 1993), pp. 267–285.

    Google Scholar 

  32. M. Shub, S. Smale, Complexity of Bezout’s theorem. V. Polynomial time, Theor. Comput. Sci. 133(1), 141–164 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  33. M. Shub, S. Smale, Complexity of Bezout’s theorem. IV. Probability of success; extensions, SIAM J. Numer. Anal. 33(1), 128–148 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  34. S. Smale, Mathematical problems for the next century, in Mathematics: Frontiers and Perspectives (Amer. Math. Soc., Providence, 2000), pp. 271–294.

    Google Scholar 

  35. A.J. Sommese, C.W. Wampler II, The Numerical Solution of Systems of Polynomials (World Scientific, Hackensack, 2005).

    Book  MATH  Google Scholar 

  36. J. Verschelde, Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. Math. Softw. 25(2), 251–276 (1999), available at http://www.math.uic.edu/~jan.

    Article  MATH  Google Scholar 

  37. J. Verschelde, Math review of “On Smale’s 17th problem: a probabilistic positive solution” by C. Beltrán and L.M. Pardo. MR2403529 (2009h:65082) in Mathscinet.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Beltrán.

Additional information

Communicated by Michael Todd.

Research was partially supported by a postdoctoral grant from FECYT (Fundación Española para la Ciencia y la Tecnología), MTM2007-62799 and MTM2010-16051, Spanish Ministry of Science (MICINN).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beltrán, C., Pardo, L.M. Fast Linear Homotopy to Find Approximate Zeros of Polynomial Systems. Found Comput Math 11, 95–129 (2011). https://doi.org/10.1007/s10208-010-9078-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-010-9078-9

Keywords

Mathematics Subject Classification (2000)

Navigation