ACM SIGKDD, Netflix, Proceedings of KDD Cup and Workshop (2007). Proceedings available online at http://www.cs.uic.edu/~liub/KDD-cup-2007/proceedings.html.
T. Ando, R.A. Horn, C.R. Johnson, The singular values of a Hadamard product: A basic inequality, Linear Multilinear Algebra
21, 345–365 (1987).
MATH
Article
MathSciNet
Google Scholar
Y. Azar, A. Fiat, A. Karlin, F. McSherry, J. Saia, Spectral analysis of data, in Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing (2001).
C. Beck, R. D’Andrea, Computational study and comparisons of LFT reducibility methods, in Proceedings of the American Control Conference (1998).
D.P. Bertsekas, A. Nedic, A.E. Ozdaglar, Convex Analysis and Optimization (Athena Scientific, Belmont, 2003).
MATH
Google Scholar
B. Bollobás, Random Graphs, 2nd edn. (Cambridge University Press, Cambridge, 2001).
MATH
Google Scholar
A. Buchholz, Operator Khintchine inequality in non-commutative probability, Math. Ann.
319, 1–16 (2001).
MATH
Article
MathSciNet
Google Scholar
J.-F. Cai, E.J. Candès, Z. Shen, A singular value thresholding algorithm for matrix completion, Technical report (2008). Preprint available at http://arxiv.org/abs/0810.3286.
E.J. Candès, J. Romberg, Sparsity and incoherence in compressive sampling, Inverse Probl.
23(3), 969–985 (2007).
MATH
Article
Google Scholar
E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory
52(2), 489–509 (2006).
Article
Google Scholar
E.J. Candès, T. Tao, Decoding by linear programming, IEEE Trans. Inf. Theory
51(12), 4203–4215 (2005).
Article
Google Scholar
E.J. Candès, T. Tao, Near optimal signal recovery from random projections: Universal encoding strategies?, IEEE Trans. Inf. Theory
52(12), 5406–5425 (2006).
Article
Google Scholar
A.L. Chistov, D.Yu. Grigoriev, Complexity of quantifier elimination in the theory of algebraically closed fields, in Proceedings of the 11th Symposium on Mathematical Foundations of Computer Science. Lecture Notes in Computer Science, vol. 176 (Springer, Berlin, 1984), pp. 17–31.
Google Scholar
V.H. de la Peña, Decoupling and Khintchine’s inequalities for U-statistics, Ann. Probab.
20(4), 1877–1892 (1992).
MATH
Article
MathSciNet
Google Scholar
V.H. de la Peña, S.J. Montgomery-Smith, Decoupling inequalities for the tail probabilities of multivariate U-statistics, Ann. Probab.
23(2), 806–816 (1995).
MATH
Article
MathSciNet
Google Scholar
D.L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory
52(4), 1289–1306 (2006).
Article
MathSciNet
Google Scholar
P. Drineas, M.W. Mahoney, S. Muthukrishnan, Subspace sampling and relative-error matrix approximation: Column-based methods, in Proceedings of the Tenth Annual RANDOM (2006).
P. Drineas, M.W. Mahoney, S. Muthukrishnan, Subspace sampling and relative-error matrix approximation: Column-row-based methods, in Proceedings of the Fourteenth Annual ESA (2006).
M. Fazel, Matrix rank minimization with applications, Ph.D. thesis, Stanford University (2002).
R.A. Horn, C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1994). Corrected reprint of the 1991 original.
MATH
Google Scholar
T. Klein, E. Rio, Concentration around the mean for maxima of empirical processes, Ann. Probab.
33(3), 1060–1077 (2005).
MATH
Article
MathSciNet
Google Scholar
B. Laurent, P. Massart, Adaptive estimation of a quadratic functional by model selection, Ann. Stat.
28(5), 1302–1338 (2000).
MATH
Article
MathSciNet
Google Scholar
M. Ledoux, The Concentration of Measure Phenomenon (AMS, Providence, 2001).
MATH
Google Scholar
A.S. Lewis, The mathematics of eigenvalue optimization, Math. Programm.
97(1–2), 155–176 (2003).
MATH
Google Scholar
N. Linial, E. London, Y. Rabinovich, The geometry of graphs and some of its algorithmic applications, Combinatorica
15, 215–245 (1995).
MATH
Article
MathSciNet
Google Scholar
F. Lust-Picquard, Inégalités de Khintchine dans C
p
(1<p<∞), C. R. Acad. Sci. Paris, Sér. I
303(7), 289–292 (1986).
Google Scholar
S. Ma, D. Goldfarb, L. Chen, Fixed point and Bregman iterative methods for matrix rank minimization, Technical report (2008).
M. Mesbahi, G.P. Papavassilopoulos, On the rank minimization problem over a positive semidefinite linear matrix inequality, IEEE Trans. Automat. Control
42(2), 239–243 (1997).
MATH
Article
MathSciNet
Google Scholar
B. Recht, M. Fazel, P. Parrilo, Guaranteed minimum rank solutions of matrix equations via nuclear norm minimization, SIAM Rev. (2007, submitted). Preprint available at http://arxiv.org/abs/0706.4138.
J.D.M. Rennie, N. Srebro, Fast maximum margin matrix factorization for collaborative prediction, in Proceedings of the International Conference of Machine Learning (2005).
M. Rudelson, Random vectors in the isotropic position, J. Funct. Anal.
164(1), 60–72 (1999).
MATH
Article
MathSciNet
Google Scholar
M. Rudelson, R. Vershynin, Sampling from large matrices: an approach through geometric functional analysis, J. ACM, 54(4), Art. 21, 19 pp. (electronic) (2007).
A.M.-C. So, Y. Ye, Theory of semidefinite programming for sensor network localization, Math. Program., Ser. B, 109, 2007.
N. Srebro, Learning with matrix factorizations, Ph.D. thesis, Massachusetts Institute of Technology, (2004).
M. Talagrand, New concentration inequalities in product spaces, Invent. Math.
126(3), 505–563 (1996).
MATH
Article
MathSciNet
Google Scholar
K.C. Toh, M.J. Todd, R.H. Tütüncü, SDPT3—a MATLAB software package for semidefinite-quadratic-linear programming. Available from http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.
L. Vandenberghe, S.P. Boyd, Semidefinite programming, SIAM Rev.
38(1), 49–95 (1996).
MATH
Article
MathSciNet
Google Scholar
G.A. Watson, Characterization of the subdifferential of some matrix norms, Linear Algebra Appl.
170, 33–45 (1992).
MATH
Article
MathSciNet
Google Scholar