Skip to main content
Log in

Sturm Sequences and Random Eigenvalue Distributions

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper proposes that the study of Sturm sequences is invaluable in the numerical computation and theoretical derivation of eigenvalue distributions of random matrix ensembles. We first explore the use of Sturm sequences to efficiently compute histograms of eigenvalues for symmetric tridiagonal matrices and apply these ideas to random matrix ensembles such as the β-Hermite ensemble. Using our techniques, we reduce the time to compute a histogram of the eigenvalues of such a matrix from O(n 2+m) to O(mn) time where n is the dimension of the matrix and m is the number of bins (with arbitrary bin centers and widths) desired in the histogram (m is usually much smaller than n). Second, we derive analytic formulas in terms of iterated multivariate integrals for the eigenvalue distribution and the largest eigenvalue distribution for arbitrary symmetric tridiagonal random matrix models. As an example of the utility of this approach, we give a derivation of both distributions for the β-Hermite random matrix ensemble (for general β). Third, we explore the relationship between the Sturm sequence of a random matrix and its shooting eigenvectors. We show using Sturm sequences that assuming the eigenvector contains no zeros, the number of sign changes in a shooting eigenvector of parameter λ is equal to the number of eigenvalues greater than λ. Finally, we use the techniques presented in the first section to experimentally demonstrate a O(log n) growth relationship between the variance of histogram bin values and the order of the β-Hermite matrix ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Baker, P.J. Forrester, The Calogero–Sutherland model and generalized classical polynomials, Commun. Math. Phys. 188, 175—216 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Desrosiers, P.J. Forrester, Hermite and Laguerre β-ensembles: Asymptotic corrections to the eigenvalue density, Nucl. Phys. B 743(3), 307–332 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  3. I. Dumitriu, A. Edelman, Matrix models for beta ensembles, J. Math. Phys. 43(11), 5830–5847 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  4. I. Dumitriu, A. Edelman, Global spectrum fluctuations for the β-Hermite and β-Laguerre ensembles via matrix models, J. Math. Phys. 47(6), 063302 (2006).

    Article  MathSciNet  Google Scholar 

  5. I. Dumitriu, A. Edelman, G. Shuman, MOPS: Multivariate orthogonal polynomials (symbolically), J. Symb. Comput. 42(6), 587–620 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Edelman, Stochastic differential equations and random matrices. http://www-math.mit.edu/~edelman/homepage/talks/siam2003.ppt.

  7. A. Edelman, N.R. Rao, Random matrix theory, Acta Numer. 14, 233–297 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Edelman, B. Sutton, From random matrices to stochastic operators, J. Stat. Phys. 127(6), 1121–1165 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  9. K. Johansson, On fluctuations of eigenvalues of random hermitian matrices, Duke Math. J. 91(1), 151–204 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  10. M.L. Mehta, Random Matrices (Elsevier, Amsterdam, 1991).

    MATH  Google Scholar 

  11. J. Ramírez, B. Rider, B. Virag, Beta ensembles, stochastic airy spectrum, and a diffusion (2006). arXiv:math/0607331v2

  12. J.A. Rice, Mathematical Statistics and Data Analysis, 2nd edn. (Duxbury Press, N. Scituate, 1995).

    MATH  Google Scholar 

  13. C.A. Tracy, H. Widom, The distribution of the largest eigenvalue in the Gaussian ensembles, in Calogero–Moser–Sutherland models, CRM Ser. Math. Phys. 4, 461–472 (2000).

    MathSciNet  Google Scholar 

  14. L.N. Trefethen, D. Bau, III, Numerical Linear Algebra (SIAM, Philadelphia, 1997).

    MATH  Google Scholar 

  15. E.P. Wigner, On the distribution of the roots of certain symmetric matrices, Ann. Math. 67, 325–328 (1958).

    Article  MathSciNet  Google Scholar 

  16. J.H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon Press, Oxford, 1965).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cy P. Chan.

Additional information

Communicated by Andrew Odlyzko.

This paper is dedicated to the fond memory of James T. Albrecht.

This research was supported by NSF Grant DMS–0411962.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, J.T., Chan, C.P. & Edelman, A. Sturm Sequences and Random Eigenvalue Distributions. Found Comput Math 9, 461–483 (2009). https://doi.org/10.1007/s10208-008-9037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-008-9037-x

Keywords

Mathematics Subject Classification (2000)

Navigation