Skip to main content
Log in

Local Linear Convergence for Alternating and Averaged Nonconvex Projections

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

The idea of a finite collection of closed sets having “linearly regular intersection” at a point is crucial in variational analysis. This central theoretical condition also has striking algorithmic consequences: in the case of two sets, one of which satisfies a further regularity condition (convexity or smoothness, for example), we prove that von Neumann’s method of “alternating projections” converges locally to a point in the intersection, at a linear rate associated with a modulus of regularity. As a consequence, in the case of several arbitrary closed sets having linearly regular intersection at some point, the method of “averaged projections” converges locally at a linear rate to a point in the intersection. Inexact versions of both algorithms also converge linearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.J. Aragón Artacho, A.L. Dontchev, M.H. Geoffroy, Convergence of the proximal point method for metrically regular mappings, ESAIM Proc. 17, 1–8 (2007).

    Article  MATH  Google Scholar 

  2. H. Attouch, J. Bolte, P. Redont, A. Soubeyran, Alternating minimization and projection methods for nonconvex problems. arXiv:0801.1780v1, 11 Jan. 2008.

  3. A. Auslender, Méthodes Numériques pour la Résolution des Problèmes d’Optimisation avec Contraintes. PhD thesis, Uni. Grenoble, 1969.

  4. D. Aussel, A. Daniilidis, L. Thibault, Subsmooth sets: functional characterizations and related concepts, Trans. Am. Math. Soc. 357, 1275–1301 (2004).

    Article  MathSciNet  Google Scholar 

  5. H.H. Bauschke, J.M. Borwein, On the convergence of von Neumann’s alternating projection algorithm for two sets, Set-Valued Anal. 1, 185–212 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  6. H.H. Bauschke, J.M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev. 38, 367–426 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  7. H.H. Bauschke, P.L. Combettes, D.R. Luke, Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization, J. Opt. Soc. Am. 19(7), 1334–1345 (2002).

    Article  MathSciNet  Google Scholar 

  8. L.M. Bregman, The method of successive projection for finding a common point of convex sets, Sov. Math. Dokl. 6, 688–692 (1965).

    MATH  Google Scholar 

  9. E.J. Candès, J. Romberg, Sparsity and incoherence in compressive sampling, Inverse Probl. 23(3), 969–986 (2007).

    Article  MATH  Google Scholar 

  10. X. Chen, M.T. Chu, On the least squares solution of inverse eigenvalue problems, SIAM J. Numer. Anal. 33, 2417–2430 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  11. M.T. Chu, Constructing a Hermitian matrix from its diagonal entries and eigenvalues, SIAM J. Matrix Anal. 16, 207–217 (1995).

    Article  MATH  Google Scholar 

  12. F.H. Clarke, Yu.S. Ledyaev, R.J. Stern, P.R. Wolenski, Nonsmooth Analysis and Control Theory (Springer, New York, 1998).

    MATH  Google Scholar 

  13. P.L. Combettes, T. Pennanen, Proximal methods for cohypomonotone operators, SIAM J. Control Opt. 43, 731–742 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  14. P.L. Combettes, H.J. Trussell, Method of successive projections for finding a common point of sets in metric spaces, J. Optim. Theory Appl. 67(3), 487–507 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Deutsch, Best Approximation in Inner Product Spaces (Springer, New York, 2001).

    MATH  Google Scholar 

  16. F. Deutsch, H. Hundal, The rate of convergence for the cyclic projections algorithm I: angles between convex sets, J. Approx. Theory 142, 36–55 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Deutsch, H. Hundal, The rate of convergence for the cyclic projections algorithm II: norms of nonlinear operators, J. Approx. Theory 142, 56–82 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Donoho, Compressed sensing, IEEE Trans. Inf. Theory 52, 1289–1306 (2006).

    Article  MathSciNet  Google Scholar 

  19. A.L. Dontchev, A.S. Lewis, R.T. Rockafellar, The radius of metric regularity, AMS Trans. 355, 493–517 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Romberg, E.J. Candès, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory 52, 489–509 (2005).

    Google Scholar 

  21. M. Elad, Optimized projections for compressed-sensing, IEEE Trans. Signal Process. 55, 5695–5702 (2007).

    Article  MathSciNet  Google Scholar 

  22. J. Fadili, G. Peyré, Personal communication, 2007.

  23. K.M. Grigoriadis, E. Beran, Alternating projection algorithm for linear matrix inequalities problems with rank constraints, in Advances in Linear Matrix Inequality Methods in Control (SIAM, Philadelphia, 2000).

    Google Scholar 

  24. K.M. Grigoriadis, R.E. Skelton, Low-order control design for LMI problems using alternating projection methods, Automatica 32, 1117–1125 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  25. L.G. Gubin, B.T. Polyak, E.V. Raik, The method of projections for finding the common point of convex sets, USSR Comput. Math. Math. Phys. 7, 1–24 (1967).

    Article  Google Scholar 

  26. A.N. Iusem, T. Pennanen, B.F. Svaiter, Inexact versions of the proximal point algorithm without monotonicity, SIAM J. Optim. 13, 1080–1097 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  27. D. Klatte, B. Kummer, Optimization methods and stability of inclusions in Banach spaces, Math. Program. 17, 305–330 (2009).

    Article  MathSciNet  Google Scholar 

  28. A.Y. Kruger, About regularity of collections of sets, Set-Valued Anal. 14, 187–206 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  29. A.S. Lewis, D.R. Luke, J. Malick, Local convergence for alternating and averaged nonconvex projections. arXiv:0709.0109v1, 2 Sep. 2007.

  30. A.S. Lewis, J. Malick, Alternating projections on manifolds, Math. Oper. Res. 33, 216–234 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  31. B.S. Mordukhovich, Maximum principle in the problem of time optimal response with nonsmooth constraints, J. Appl. Math. Mech. 40, 960–969 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  32. B.S. Mordukhovich, Nonsmooth analysis with nonconvex generalized differentials and adjoint mappings, Dokl. Akad. Nauk BSSR 28, 976–979 (1984).

    MATH  MathSciNet  Google Scholar 

  33. B.S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications (Springer, New York, 2006).

    Google Scholar 

  34. B.S. Mordukhovich, Failure of metric regularity for major classes of variational systems, Nonlinear Anal. 69, 918–924 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  35. R. Orsi, Numerical methods for solving inverse eigenvalue problems for nonnegative matrices, SIAM J. Matrix Anal. 28, 190–212 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  36. R. Orsi, U. Helmke, J. Moore, A Newton-like method for solving rank constrained linear matrix inequalities, Automatica 42, 1875–1882 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  37. T. Pennanen, Local convergence of the proximal point algorithm and multiplier methods without monotonicity, Math. Oper. Res. 27, 170–191 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  38. G. Pierra, Eclatement de contraintes en parallèle pour la minimisation d’une forme quadratique, Lect. Notes Comput. Sci. 41, 200–218 (1976).

    Google Scholar 

  39. G. Pierra, Decomposition through formalization in a product space, Math. Program. 28, 96–115 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  40. R.A. Poliquin, R.T. Rockafellar, L. Thibault, Local differentiability of distance functions, AMS Trans. 352, 5231–5249 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  41. J. Renegar, Incorporating condition measures into the complexity theory of linear programming, SIAM J. Optim. 5, 506–524 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  42. J. Renegar, Linear programming, complexity theory and elementary functional analysis, Math. Program. 70, 279–351 (1995).

    MathSciNet  Google Scholar 

  43. J. Renegar, Condition numbers, the barrier method, and the conjugate gradient method, SIAM J. Optim. 6, 879–912 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  44. R.T. Rockafellar, R.J.-B. Wets, Variational Analysis (Springer, Berlin, 1998).

    Book  MATH  Google Scholar 

  45. A. Shapiro, Existence and differentiability of metric projections in Hilbert space, SIAM J. Optim. 4, 130–141 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  46. A. Shapiro, On the asymptotics of constrained local M-estimation, Ann. Stat. 28, 948–960 (2000).

    Article  MATH  Google Scholar 

  47. A. Shapiro, F. Al-Khayyal, First-order conditions for isolated locally optimal solutions, J. Optim. Theory Appl. 77, 189–196 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  48. J.A. Tropp, I.S. Dhillon, R.W. Heath, T. Strohmer, Designing structured tight frames via an alternating projection method, IEEE Trans. Inf. Theory 51, 188–209 (2005).

    Article  MathSciNet  Google Scholar 

  49. J. von Neumann, Functional Operators, vol. II (Princeton University Press, Princeton, 1950). Reprint of notes distributed in 1933.

    Google Scholar 

  50. C.A. Weber, J.P. Allebach, Reconstruction of frequency-offset Fourier data by alternating projection on constraint sets, in 24th Allerton Conference Proc., pp. 194–201. Urbana-Champaign, IL, 1986.

  51. K. Yang, R. Orsi, Generalized pole placement via static output feedback: a methodology based on projections, Automatica 42, 2143–2150 (2006).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Lewis.

Additional information

Communicated by Michael Todd.

Research of A.S. Lewis supported in part by National Science Foundation Grant DMS-0504032.

Research of D.R. Luke supported in part by National Science Foundation Grant DMS-0712796.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, A.S., Luke, D.R. & Malick, J. Local Linear Convergence for Alternating and Averaged Nonconvex Projections. Found Comput Math 9, 485–513 (2009). https://doi.org/10.1007/s10208-008-9036-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-008-9036-y

Keywords

Mathematics Subject Classification (2000)

Navigation