Foundations of Computational Mathematics

, Volume 9, Issue 3, pp 317–334 | Cite as

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

Article

Abstract

This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements—L1-minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of Orthogonal Matching Pursuit (ROMP) which has advantages of both approaches: the speed and transparency of OMP and the strong uniform guarantees of L1-minimization. Our algorithm, ROMP, reconstructs a sparse signal in a number of iterations linear in the sparsity, and the reconstruction is exact provided the linear measurements satisfy the uniform uncertainty principle.

Keywords

Signal recovery algorithms Restricted isometry condition Uncertainty principle Basis pursuit Compressed sensing Orthogonal matching pursuit Signal recovery Sparse approximation 

Mathematics Subject Classification (2000)

68W20 65T50 41A46 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Candès, Compressive sampling, in Proceedings of International Congress of Mathematics, vol. 3, Madrid, Spain, 2006, pp. 1433–1452. Google Scholar
  2. 2.
    E. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory 52, 489–509 (2006). CrossRefGoogle Scholar
  3. 3.
    E. Candès, T. Tao, Near-optimal signal recovery from random projections: universal encoding strategies, IEEE Trans. Inf. Theory 52, 5406–5425 (2004). CrossRefGoogle Scholar
  4. 4.
    E.J. Candès, T. Tao, Decoding by linear programming, IEEE Trans. Inf. Theory 51, 4203–4215 (2005). CrossRefGoogle Scholar
  5. 5.
    A. Cohen, W. Dahmen, R. DeVore, Compressed sensing and k-term approximation, Manuscript (2007). Google Scholar
  6. 6.
    Compressed sensing, webpage, http://www.dsp.ece.rice.edu/cs/.
  7. 7.
    D. Donoho, Compressed sensing, IEEE Trans. Inf. Theory 52, 1289–1306 (2006). CrossRefMathSciNetGoogle Scholar
  8. 8.
    D. Donoho, M. Elad, V. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise, IEEE Trans. Inf. Theory 52, 6–18 (2006). CrossRefMathSciNetGoogle Scholar
  9. 9.
    D. Donoho, M. Elad, V. Temlyakov, On the Lebesgue type inequalities for greedy approximation, J. Approx. Theory 147, 185–195 (2007). MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    D. Donoho, P. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math. 49, 906–931 (1989). MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. Gilbert, S. Muthukrishnan, M. Strauss, Approximation of functions over redundant dictionaries using coherence, in The 14th Annual ACM–SIAM Symposium on Discrete Algorithms (2003). Google Scholar
  12. 12.
    A. Gilbert, M. Strauss, J. Tropp, R. Vershynin, Algorithmic linear dimension reduction in the L1 norm for sparse vectors, submitted. Conference version, in Algorithmic Linear Dimension Reduction in the L 1 Norm for Sparse Vectors, Allerton, 2006. 44th Annual Allerton Conference on Communication, Control, and Computing. Google Scholar
  13. 13.
    A. Gilbert, M. Strauss, J. Tropp, R. Vershynin, One sketch for all: fast algorithms for compressed sensing, in STOC 2007. 39th ACM Symposium on Theory of Computing, San Diego, 2007, to appear. Google Scholar
  14. 14.
    Y. Lyubarskii, R. Vershynin, Uncertainty principles and vector quantization, submitted. Google Scholar
  15. 15.
    S. Mendelson, A. Pajor, N. Tomczak-Jaegermann, Uniform uncertainty principle for Bernoulli and subgaussian ensembles, Constr. Approx., submitted. Google Scholar
  16. 16.
    H. Rauhut, On the impossibility of uniform recovery using greedy methods, in Sample Theory Signal Image Process., to appear. Google Scholar
  17. 17.
    M. Rudelson, R. Vershynin, On sparse reconstruction from Fourier and Gaussian measurements, Commun. Pure Appl. Math., to appear. Conference version in CISS 2006. 40th Annual Conference on Information Sciences and Systems, Princeton. Google Scholar
  18. 18.
    D. Spielman, S.-H. Teng, Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time, J. ACM 51, 385–463 (2004). CrossRefMathSciNetGoogle Scholar
  19. 19.
    V. Temlyakov, Nonlinear methods of approximation, Found. Comput. Math. 3, 33–107 (2003). MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit, IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007). CrossRefMathSciNetGoogle Scholar
  21. 21.
    R. Vershynin, Beyond Hirsch Conjecture: walks on random polytopes and smoothed complexity of the simplex method, submitted. Conference version in FOCS 2006. 47th Annual Symposium on Foundations of Computer Science, Berkeley, pp. 133–142. Google Scholar

Copyright information

© SFoCM 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaDavisUSA

Personalised recommendations