Skip to main content
Log in

Maritime cybersecurity: protecting digital seas

  • Regular Contribution
  • Published:
International Journal of Information Security Aims and scope Submit manuscript

Abstract

Increasing digitisation in the maritime domain and the intensive use of information technologies have become essential for the effective functioning of systems that manage navigation, communications, sensors and weapons throughout the maritime chain. In this context, the issuance and enforcement of international standards and policies are seeking to mitigate the appearance of threats and vulnerabilities that aim to compromise access to functionalities, on-board systems and network integrity. Thus, in this article, we first review the main proposals for guidelines, frameworks and other solutions related to cybersecurity in the maritime environment. Subsequently, we analyse the way in which cybersecurity challenges specific to systems and equipment in this particular environment are addressed, identifying the main cybersecurity weaknesses and needs in the maritime environment that are not completely addressed. Based on this analysis, we then propose the structure of POSEIDON, a comprehensive framework for managing cybersecurity in maritime environments that addresses the identified gaps. This cybersecurity management framework takes into account existing proposals and is complemented by a set of new elements to provide a comprehensive approach to addressing the weaknesses identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

This manuscript has no associated data.

References

  1. Drazovich, L., Brew, L., Wetzel, S.: Advancing the state of maritime cybersecurity guidelines to improve the resilience of the maritime transportation system. In: Proceedings of the 2021 IEEE International Conference on Cyber Security and Resilience, CSR 2021 503–509 (2021). https://doi.org/10.1109/CSR51186.2021.9527922

  2. Greiman, V.: Navigating the cyber sea: Dangerous atolls ahead, In: 14th International Conference on Cyber Warfare and Security, ICCWS 2019 87–93 (2019)

  3. Canepa, M., Ballini, F., Dalaklis, D., Vakili, S., Hernandez, L.M.C.: Cr cybermar as a solution path towards cybersecurity soundness in maritime logistics domain. Trans. Marit. Sci. 10, 147 (2021). https://doi.org/10.7225/toms.v10.n01.011

    Article  Google Scholar 

  4. Weaver, G.A., Feddersen, B., Marla, L., Wei, D., Rose, A., Moer, M.V.: Estimating economic losses from cyber-attacks on shipping ports: an optimization-based approach. Transp. Res. Part C Emerg. Technol. (2022). https://doi.org/10.1016/J.TRC.2021.103423

    Article  Google Scholar 

  5. Amro, A., Oruc, A., Gkioulos, V., Katsikas, S.: Navigation data anomaly analysis and detection. Information (Switzerland) 13, 96 (2022). https://doi.org/10.3390/info13030104

    Article  Google Scholar 

  6. Alekseenkov, A., Klyuchnikova, D., Dedova, N., Sokolov, S.: Cyberattacks in the water transport industry: Types and diversity (2022). https://doi.org/10.1007/978-3-030-96383-5_171

  7. Meland, P.H., Bernsmed, K., Wille, E., Rødseth, J., Nesheim, D.A.: A retrospective analysis of maritime cyber security incidents, 519–530 15, 519 (2021). https://doi.org/10.12716/1001.15.03.04. https://sintef.brage.unit.no/sintef-xmlui/handle/11250/3026870

  8. Akdağ, M., Solnør, P., Johansen, T.A.: Collaborative collision avoidance for maritime autonomous surface ships: a review. Ocean Eng. (2022). https://doi.org/10.1016/J.OCEANENG.2022.110920

    Article  Google Scholar 

  9. Tam, K., Jones, K.: Macra: a model-based framework for maritime cyber-risk assessment. WMU J. Marit. Aff. 18, 129 (2019). https://doi.org/10.1007/S13437-019-00162-2/FIGURES/14

    Article  Google Scholar 

  10. Avanesova, T.P., Gruzdeva, L.K., Iuskaev, R.A., Gruzdev, D.Y., Somko, M.L.: Analysis of cyber-security aspects both ashore and at sea. In: IOP Conference Series: Earth and Environmental Science 872 (2021). https://doi.org/10.1088/1755-1315/872/1/012024

  11. Silverajan, B., Vistiaho, P.: Enabling cybersecurity incident reporting and coordinated handling for maritime sector. In: Proceedings - 2019 14th Asia Joint Conference on Information Security, AsiaJCIS 2019 88–95 (2019). https://doi.org/10.1109/AsiaJCIS.2019.000-1

  12. Raimondi, M., Longo, G., Merlo, A., Armando, A., Russo, E.: Training the maritime security operations centre teams. In: Proceedings of the 2022 IEEE International Conference on Cyber Security and Resilience, CSR 2022 388–393 (2022). https://doi.org/10.1109/CSR54599.2022.9850324

  13. Bolbot, V., Theotokatos, G., Boulougouris, E., Vassalos, D.: A novel cyber-risk assessment method for ship systems. Saf. Sci. (2020). https://doi.org/10.1016/j.ssci.2020.104908

    Article  Google Scholar 

  14. Jo, Y., Choi, O., You, J., Cha, Y., Lee, D.H.: Cyberattack models for ship equipment based on the mitre attack framework. Sensors (2022). https://doi.org/10.3390/s22051860

    Article  Google Scholar 

  15. Kechagias, E.P., Chatzistelios, G., Papadopoulos, G.A., Apostolou, P.: Digital transformation of the maritime industry: a cybersecurity systemic approach. Int. J. Crit. Infrastruct. Prot. 37, 100526 (2022). https://doi.org/10.1016/J.IJCIP.2022.100526

    Article  Google Scholar 

  16. Koola, P.M.: Cybersecurity: a deep dive into the abyss. Mar. Technol. Soc. J. 52, 31 (2018). https://doi.org/10.4031/MTSJ.52.5.2

    Article  Google Scholar 

  17. Sahay, R., Meng, W., Estay, D.A., Jensen, C.D., Barfod, M.B.: Cybership-iot: a dynamic and adaptive sdn-based security policy enforcement framework for ships. Futur. Gener. Comput. Syst. 100, 736 (2019). https://doi.org/10.1016/J.FUTURE.2019.05.049

    Article  Google Scholar 

  18. A. de la Unión Europea para la Ciberseguridad ENISA. Agencia de la unión europea para la ciberseguridad - enisa. https://www.enisa.europa.eu/

  19. Ali, N.A.R.A., Chebotareva, A.A., Chebotarev, V.E.: Cyber security in marine transport: Opportunities and legal challenges. Pomorstvo 35, 248 (2021). https://doi.org/10.31217/P.35.2.7

  20. Fiorini, M., Gupta, N.: Ict solutions and digitalisation in ports and shipping. ICT Solut. Digitalisation Ports Shipping (2021). https://doi.org/10.1049/PBTR030E

    Article  Google Scholar 

  21. Shapiro, L.R., Maras, M.H., Velotti, L., Pickman, S., Wei, H.L., Till, R.: Trojan horse risks in the maritime transportation systems sector. J. Transp. Secur. 11, 65 (2018). https://doi.org/10.1007/S12198-018-0191-3

    Article  Google Scholar 

  22. Hassani, V., Crasta, N., Pascoal, A.M.: Cyber security issues in navigation systems of marine vessels from a control perspective. In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE 7B-2017 (2017). https://doi.org/10.1115/OMAE201761771

  23. Junior, W.C.L., de Moraes, C.C., de Albuquerque, C.E., Machado, R.C.S., de Sà, A.O.: A triggering mechanism for cyber-attacks in naval sensors and systems. Sensors (Basel, Switzerland) (2021). https://doi.org/10.3390/S21093195

    Article  Google Scholar 

  24. Chybowski, L., Gawdzińska, K., Laskowski, R.: Assessing the unreliability of systems during the early operation period of a ship-a case study. J. Mar. Sci. Eng. 7, 213 (2019). https://doi.org/10.3390/JMSE7070213

    Article  Google Scholar 

  25. Dobryakova, L.A., Lemieszewski, Łukasz S., Ochin, E.F.: Gnss spoofing detection using static or rotating single-antenna of a static or moving victim. IEEE Access 6, 79074 (2018). https://doi.org/10.1109/ACCESS.2018.2879718

    Article  Google Scholar 

  26. Marcos, E.P., Caizzone, S., Konovaltsev, A., Cuntz, M., Elmarissi, W., Yinusa, K., Meurer, M.: Interference awareness and characterization for gnss maritime applications. In: 2018 IEEE/ION Position, Location and Navigation Symposium, PLANS 2018 - Proceedings pp. 908–919 (2018). https://doi.org/10.1109/PLANS.2018.8373469

  27. Lee, Y.C., Park, S.K., Lee, W.K., Kang, J.: Improving cyber security awareness in maritime transport : a way forward. J. Adv. Mar. Eng. Technol. (JAMET) 41, 738 (2017). https://doi.org/10.5916/JKOSME.2017.41.8.738

    Article  Google Scholar 

  28. Svilicic, B., Brčić, D., Žuškin, S., Kalebić, D.: Raising awareness on cyber security of ecdis. TransNav 13, 231 (2019). https://doi.org/10.12716/1001.13.01.24

  29. Svilicic, B., Rudan, I., Frančić, V., Mohović, D.: Towards a cyber secure shipboard radar. J. Navig. 73, 547 (2020). https://doi.org/10.1017/S0373463319000808

    Article  Google Scholar 

  30. Wolsing, K., Saillard, A., Bauer, J., Wagner, E., van Sloun, C., Fink, I.B., Schmidt, M., Wehrle, K., Henze, M.: Network attacks against marine radar systems: A taxonomy, simulation environment, and dataset 114–122 (2022). https://doi.org/10.1109/LCN53696.2022.9843801

  31. Amro, A., Gkioulos, V.: From click to sink: Utilizing ais for command and control in maritime cyber attacks, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 13556LNCS, 535 (2022). https://doi.org/10.1007/978-3-031-17143-7_26/COVER. https://link.springer.com/chapter/10.1007/978-3-031-17143-7_26

  32. Hareide, O.S., Josok, O., Lund, M.S., Ostnes, R., Helkala, K.: Enhancing navigator competence by demonstrating maritime cyber security. J. Navig. 71, 1025 (2018). https://doi.org/10.1017/S0373463318000164

    Article  Google Scholar 

  33. Scanlan, J.D., Styles, J.M., Lyneham, D., Lützhöft, M.H.: New internet satellite constellations to increase cyber risk in ill-prepared industries. In: Proceedings of the International Astronautical Congress, IAC 2019-October (2019)

  34. He, X., Wang, J., Liu, J., Ding, W., Han, Z., Wang, B., Nebhen, J., Wang, W.: Dns rebinding threat modeling and security analysis for local area network of maritime transportation systems. IEEE Trans. Intell. Transp. Syst. (2021). https://doi.org/10.1109/TITS.2021.3135197

    Article  Google Scholar 

  35. Androjna, A., Perkovič, M., Pavic, I., Mišković, J.: Ais data vulnerability indicated by a spoofing case-study. Appl. Sci. (Switzerland) (2021). https://doi.org/10.3390/APP11115015

    Article  Google Scholar 

  36. Khandker, S., Turtiainen, H., Costin, A., Hamalainen, T.: Cybersecurity attacks on software logic and error handling within ais implementations: a systematic testing of resilience. IEEE Access 10, 29493 (2022). https://doi.org/10.1109/ACCESS.2022.3158943

    Article  Google Scholar 

  37. 2021 world automation congress, wac 2021, World Automation Congress Proceedings 2021-August (2021)

  38. Enoch, S.Y., Lee, J.S., Kim, D.S.: Novel security models, metrics and security assessment for maritime vessel networks. Comput. Netw. 189, 107934 (2021). https://doi.org/10.1016/J.COMNET.2021.107934

    Article  Google Scholar 

  39. Yoo, Y., Park, H.S.: Qualitative risk assessment of cybersecurity and development of vulnerability enhancement plans in consideration of digitalized ship. J. Mar. Sci. Eng. (2021). https://doi.org/10.3390/jmse9060565

    Article  Google Scholar 

  40. BIMCO. The guidelines on cyber security onboard ships (2021). https://www.bimco.org/about-us-and-our-members/publications/the-guidelines-on-cyber-security-onboard-ships

  41. OMI. International maritime organization (2020). https://www.imo.org/es/About/Paginas/Default.aspx

  42. IMO, I.M.O.: Guidelines on maritime cyber risk management, Web site IMO- MSC-FAL.1/Circ.3 (2017). https://wwwcdn.imo.org/localresources/en/OurWork/Security/Documents/Resolution%20MSC.428(98).pdf

  43. Xing, B., Dai, J., Liu, S.: Enforcement of opacity security properties for ship information system. Int. J. Naval Archit. Ocean Eng. 8, 423 (2016). https://doi.org/10.1016/J.IJNAOE.2016.05.012

    Article  Google Scholar 

  44. Organization, I.M.: Maritime cyber risk management in safety management systems (2017). https://wwwcdn.imo.org/localresources/en/OurWork/Security/Documents/Resolution%20MSC.428(98).pdf

  45. Stoneburner, G., Goguen, A., Feringa, A.: Risk management guide for information technology systems recommendations of the national institute of standards and technology

  46. Talas, R.: Port security. Adv. Sci. Technol. Secur. Appl. (2020). https://doi.org/10.1007/978-3-030-34630-0_10

    Article  Google Scholar 

  47. de Žiga Turk, B.G., Soto, B.R., Mantha, A., Maciel, A. Georgescu.: A systemic framework for addressing cybersecurity in construction. Autom. Constr. 133, 103988 (2022). https://doi.org/10.1016/J.AUTCON.2021.103988

    Article  Google Scholar 

  48. Forum, O.O.C.I.M.: Tanker management and self assessment 3-a best practice guide (2014). https://www.ocimf.org/es/publicaciones-y-promoci%C3%B3n/publicaciones/libros/tanker-management-and-self-assessment-3

  49. IMCA. Security measures and emergency response guidelines - imca (2021). https://www.imca-int.com/product/security-measures-and-emergency-response-guidelines/

  50. IMCA. International maritime contractors association (2022). https://www.imca-int.com/about-imca/

  51. de los Estados Americanos, O.: Resumen ejecutivo ciberseguridad maritima, LA SEGURIDAD CIBERNÉTICA MARÍTIMA EN EL HEMISFERIO OCCIDENTAL 1, 9 (2021). https://www.oas.org/es/sms/cicte/docs/La-seguridad-cibernetica-maritima-en-el-Hemisferio-Occidental-introduccion-y-directrices.pdf

  52. OEA. Organización de estados americanos - oea : Quiénes somos (2022). https://www.oas.org/es/acerca/quienes_somos.asp

  53. O. de los Estados Americanos. Programa de ciberseguridad de la oea (2022). https://www.oas.org/es/sms/cicte/prog-ciberseguridad.asp

  54. O. del Tratado del Atlàntico Norte - OTAN. Otan - una alianza política y militar (2016). https://www.nato.int/nato-welcome/index_es.html

  55. de Peralta, F.A., Watson, M.D., Bays, R.M., Boles, J.R., Powers, F.E.: Cybersecurity resiliency of marine renewable energy systems part 2: cybersecurity best practices and risk management. Mar. Technol. Soc. J. 55, 104 (2021). https://doi.org/10.4031/MTSJ.55.2.4

    Article  Google Scholar 

  56. Mascareñas, C., Vàzquez, A.I.: Notes on maritime cybersecurity in ship design, RINA. In: Royal Institution of Naval Architects-International Conference on Marine Design 2020, Papers 91–99 (2020)

  57. Heering, D.: Ensuring cybersecurity in shipping: Reference to estonian shipowners. TransNav 14, 271 (2020). https://doi.org/10.12716/1001.14.02.01

    Article  Google Scholar 

  58. Papastergiou, S., Polemi, N., Kotzanikolaou, P.: Design and validation of the medusa supply chain risk assessment methodology and system. Int. J. Crit. Infrastruct. 14, 1 (2018). https://doi.org/10.1504/IJCIS.2018.090647

    Article  Google Scholar 

  59. Potamos, G., Theodoulou, S., Stavrou, E., Stavrou, S.: Maritime cyber threats detection framework: building capabilities. IFIP Adv. Inf. Commun. Technol. 650 IFIP, 107 (2022). https://doi.org/10.1007/978-3-031-08172-9_8

    Article  Google Scholar 

  60. Jacq, O., Boudvin, X., Brosset, D., Kermarrec, Y., Simonin, J.: Detecting and hunting cyberthreats in a maritime environment: Specification and experimentation of a maritime cybersecurity operations centre. In: 2018 2nd Cyber Security in Networking Conference, CSNet 2018 (2019). https://doi.org/10.1109/CSNET.2018.8602669

  61. Jones, K., Beel, J.: Cybersecurity automation: securely delivering smart technologies and operations, RINA, Royal Institution of Naval Architects - Warship 2017: Naval Submarines and UUV”s (2017)

  62. Carrara, E.: Cyber resilience of automated and autonomous ships. Prog. Mar. Sci. Technol. 6, 215 (2022). https://doi.org/10.3233/PMST220027

    Article  Google Scholar 

  63. Wu, J., Thorne-Large, J., Zhang, P.: Safety first: the risk of over-reliance on technology in navigation. J. Transp. Saf. Secur. 14, 1220 (2022). https://doi.org/10.1080/19439962.2021.1909681

    Article  Google Scholar 

  64. Caprolu, M., Pietro, R.D., Raponi, S., Sciancalepore, S., Tedeschi, P.: Vessels cybersecurity: issues, challenges, and the road ahead. IEEE Commun. Mag. 58, 90 (2020). https://doi.org/10.1109/MCOM.001.1900632

    Article  Google Scholar 

  65. Karim, M.S.: Maritime cybersecurity and the imo legal instruments: Sluggish response to an escalating threat? Marine Policy (2022). https://doi.org/10.1016/J.MARPOL.2022.105138

    Article  Google Scholar 

  66. Farah, M.A.B., Ukwandu, E., Hindy, H., Brosset, D., Bures, M., Andonovic, I., Bellekens, X.: Cyber security in the maritime industry: a systematic survey of recent advances and future trends. Information 2022 13, 22 (2022). https://doi.org/10.3390/INFO13010022

    Article  Google Scholar 

  67. García-Peñalvo, F.J.: Developing robust state-of-the-art reports: systematic literature reviews. Edu. Knowl. Soc. 23, E28600 (2022). https://doi.org/10.14201/EKS.28600

    Article  Google Scholar 

  68. Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.: Lessons from applying the systematic literature review process within the software engineering domain. J. Syst. Softw. 80, 571 (2007). https://doi.org/10.1016/J.JSS.2006.07.009

    Article  Google Scholar 

  69. Barat, S., Clark, T., Barn, B., Kulkarni, V.: A model-based approach to systematic review of research literature. In: ACM International Conference Proceeding Series pp. 15–25 (2017). https://doi.org/10.1145/3021460.3021462. https://dl.acm.org/doi/10.1145/3021460.3021462

  70. Barn, B., Barat, S., Clark, T.: Conducting systematic literature reviews and systematic mapping studies. In: ACM International Conference Proceeding Series pp. 212–213 (2017). https://doi.org/10.1145/3021460.3021489. https://dl.acm.org/doi/10.1145/3021460.3021489

  71. Karahalios, H.: Appraisal of a ship’s cybersecurity efficiency: the case of piracy. J. Transp. Secur. 13, 179 (2020). https://doi.org/10.1007/s12198-020-00223-1

    Article  Google Scholar 

  72. Furumoto, K., Kolehmainen, A., Silverajan, B., Takahashi, T., Inoue, D., Nakao, K.: (IEEE, 2020), 100–105. https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00034

  73. Jacq, O., Brosset, D., Kermarrec, Y., Simonin, J.: Cyber attacks real time detection: Towards a cyber situational awareness for naval systems. In: 2019 International Conference on Cyber Situational Awareness, Data Analytics and Assessment, Cyber SA 2019 (2019). https://doi.org/10.1109/CYBERSA.2019.8899351

  74. Progoulakis, I., Rohmeyer, P., Nikitakos, N.: Cyber physical systems security for maritime assets. J. Mar. Sci. Eng. 9, 96 (2021). https://doi.org/10.3390/JMSE9121384

    Article  Google Scholar 

  75. Hopcraft, R.: Developing maritime digital competencies. IEEE Commun. Stand. Mag. 5, 12 (2021). https://doi.org/10.1109/MCOMSTD.101.2000073

    Article  Google Scholar 

  76. ENISA. Cyber security culture in organisations - enisa (2018). https://www.enisa.europa.eu/publications/cyber-security-culture-in-organisations

  77. Polatidis, N., Pimenidis, E., Pavlidis, M., Papastergiou, S., Mouratidis, H.: From product recommendation to cyber-attack prediction: generating attack graphs and predicting future attacks. Evol. Syst. 11, 479 (2020). https://doi.org/10.1007/S12530-018-9234-Z

    Article  Google Scholar 

  78. Yoo, J., Jo, Y.: Formulating cybersecurity requirements for autonomous ships using the square methodology. Sensors (2023). https://doi.org/10.3390/S23115033

    Article  Google Scholar 

  79. Söner, Ö., Kayisoglu, G., Bolat, P., Tam, K.: Cybersecurity risk assessment of vdr. J. Navig. 76, 20 (2023). https://doi.org/10.1017/S0373463322000595

    Article  Google Scholar 

  80. Shipunov, I., Nyrkov, A., Korotkov, V., Alimov, O., Knysh, T.: Principles of using modern it trends in maritime shipping. In: E3S Web of Conferences 203 (2020). https://doi.org/10.1051/e3sconf/202020305005

  81. Trimble, D., Monken, J., Sand, A.F.: A framework for cybersecurity assessments of critical port infrastructure. In: 2017 IEEE International Conference on Cyber Conflict U.S., CyCon U.S. 2017 - Proceedings 2017-December, 1 (2017). https://doi.org/10.1109/CYCONUS.2017.8167506

  82. Trimble, D., Monken, J., Sand, A.F.: A framework for cybersecurity assessments of critical port infrastructure. In: 2017 IEEE International Conference on Cyber Conflict U.S., CyCon U.S. 2017-Proceedings 2017-December, 1 (2017). https://doi.org/10.1109/CYCONUS.2017.8167506

  83. Svilicic, B., Kamahara, J., Celic, J., Bolmsten, J.: Assessing ship cyber risks: a framework and case study of ecdis security. WMU J. Marit. Aff. (2019). https://doi.org/10.1007/S13437-019-00183-X/FIGURES/6

    Article  Google Scholar 

  84. Kavallieratos, G., Spathoulas, G., Katsikas, S.: Cyber risk propagation and optimal selection of cybersecurity controls for complex cyberphysical systems. Sensors (2021). https://doi.org/10.3390/S21051691

    Article  Google Scholar 

  85. Pitropakis, N., Logothetis, M., Andrienko, G., Stefanatos, J., Karapistoli, E., Lambrinoudakis, C.: Towards the creation of a threat intelligence framework for maritime infrastructures. Lect. Notes Comput. Sci. (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 1198LNCS0, 53 (2020). https://doi.org/10.1007/978-3-030-42048-2_4

    Article  Google Scholar 

  86. Hutschenreuter, H., Çakmakçı, S.D., Maeder, C., Kemmerich, T.: Ontology-based cybersecurity and resilience framework. In: ICISSP 2021 - Proceedings of the 7th International Conference on Information Systems Security and Privacy . pp. 458–466 (2021). https://doi.org/10.5220/0010233604580466

  87. Kapalidis, P.: Cybersecurity at sea, advanced sciences and technologies for security applications 127–143 (2020). https://doi.org/10.1007/978-3-030-34630-0_8

  88. Amro, A., Gkioulos, V.: Cyber risk management for autonomous passenger ships using threat-informed defense-in-depth. Int. J. Inf. Secur. 22, 249 (2023). https://doi.org/10.1007/S10207-022-00638-Y

    Article  Google Scholar 

  89. Park, C., Kontovas, C., Yang, Z., Chang, C.H.: A bn driven fmea approach to assess maritime cybersecurity risks. Ocean Coast. Manag. (2023). https://doi.org/10.1016/J.OCECOAMAN.2023.106480

    Article  Google Scholar 

  90. Melnyk, O., Onyshchenko, S., Onishchenko, O., Lohinov, O., Ocheretna, V.: Integral approach to vulnerability assessment of ship’s critical equipment and systems. Trans. Marit. Sci. (2023). https://doi.org/10.7225/TOMS.V12.N01.002

    Article  Google Scholar 

  91. Gyamfi, E., Ansere, J.A., Kamal, M., Tariq, M., Jurcut, A.: An adaptive network security system for iot-enabled maritime transportation. IEEE Trans. Intell. Transp. Syst. 24, 2538 (2023). https://doi.org/10.1109/TITS.2022.3159450

    Article  Google Scholar 

  92. Xu, Z., Yu, X., Li, Z., Song, Q.: Challenges of ship network security in the current, In: 2021 13th International Conference on Advanced Infocomm Technology, ICAIT 2021 pp. 174–179 (2021). https://doi.org/10.1109/ICAIT52638.2021.9702077

  93. Chae, C.J., Kim, M., Kim, H.J.: A study on identification of development status of mass technologies and directions of improvement. Appl. Sci. (Switzerland) (2020). https://doi.org/10.3390/app10134564

    Article  Google Scholar 

  94. Bronk, C., deWitte, P.: Maritime cybersecurity: meeting threats to globalization’s great conveyor. Proc. Annu. Hawaii Int. Conf. Syst. Sci. 2020–January, 1957 (2020). https://doi.org/10.24251/hicss.2020.240

  95. Androjna, A., Brcko, T., Pavic, I., Greidanus, H.: Assessing cyber challenges of maritime navigation. J. Mar. Sci. Eng. 8, 1 (2020). https://doi.org/10.3390/JMSE8100776

  96. Yi, C.G., Kim, Y.G.: Security testing for naval ship combat system software. IEEE Access 9, 66839 (2021). https://doi.org/10.1109/ACCESS.2021.3076918

    Article  Google Scholar 

  97. Hemminghaus, C., Bauer, J., Padilla, E.: Brat: a bridge attack tool for cyber security assessments of maritime systems. TransNav 15, 35 (2021). https://doi.org/10.12716/1001.15.01.02

    Article  Google Scholar 

  98. Potamos, G., Theodoulou, S., Stavrou, E., Stavrou, S.: Building maritime cybersecurity capacity against ransomware attacks pp. 87–101 (2023). https://doi.org/10.1007/978-981-19-6414-5_6/COVER. https://link.springer.com/chapter/10.1007/978-981-19-6414-5_6

  99. Laso, P.M., Salmon, L., Bozhilova, M., Ivanov, I., Stoianov, N., Velev, G., Claramunt, C., Yanakiev, Y.: Isola: an innovative approach to cyber threat detection in cruise shipping. Smart Innov. Syst. Technol. 255, 71 (2022). https://doi.org/10.1007/978-981-16-4884-7_7

    Article  Google Scholar 

  100. Knight, V., Sadok, M.: Is cyber-security the new lifeboat? an exploration of the employee’s perspective of cyber-security within the cruise ship industry. CEUR Workshop Proc. 3016, 216 (2021)

    Google Scholar 

  101. Hopcraft, R., Martin, K.M.: Effective maritime cybersecurity regulation-the case for a cyber code. J. Indian Ocean Reg. 14, 354 (2018). https://doi.org/10.1080/19480881.2018.1519056

    Article  Google Scholar 

  102. McGillivary, P.: Why maritime cybersecurity is an ocean policy priority and how it can be addressed. Mar. Technol. Soc. J. 52, 44 (2018). https://doi.org/10.4031/MTSJ.52.5.11

    Article  Google Scholar 

  103. Ilcev, D.S.: Software solutions for gmdss network and equipment. TransNav 16, 463 (2022). https://doi.org/10.12716/1001.16.03.07

    Article  Google Scholar 

  104. Bronk, C., deWitte, P.: Maritime cybersecurity: meeting threats to globalization’s great conveyor. Comput. Methods Appl. Sci. 56, 241 (2022). https://doi.org/10.1007/978-3-030-91293-2_10

    Article  Google Scholar 

Download references

Acknowledgements

This work has been developed thanks to the financing provided by the following projects: Di4SPDS (CHIST-ERA Call 2022) financed by UE, AETHER-UCLM (PID2020-112540RB-C42) financed by MCIN/AEI/10.13039 /501100011033; ALBA-UCLM (TED2021-130355B-C31) financed by MCIN/AEI/10.13039/501100011033/ Unión Europea NextGenerationEU/PRTR); and MESIAS (2022-GRIN-34202) financed by FEDER. Funding was also provided by the Corporación de Ciencia y Tecnología para el Desarrollo de la Industria Naval, Marítima y Fluvial, COTECMAR. Finally, we would like to thank the personnel from the Colombian National Navy who participated in this work for their availability and commitment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferney Martínez.

Ethics declarations

Conflict of interest

There are no conflicts of interest within this manuscript.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, F., Sànchez, L.E., Santos-Olmo, A. et al. Maritime cybersecurity: protecting digital seas. Int. J. Inf. Secur. 23, 1429–1457 (2024). https://doi.org/10.1007/s10207-023-00800-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10207-023-00800-0

Keywords

Navigation