Skip to main content
Log in

Cyberattack defense mechanism using deep learning techniques in software-defined networks

  • Regular Contribution
  • Published:
International Journal of Information Security Aims and scope Submit manuscript

Abstract

Software-defined networking (SDN) is a network architecture. It is becoming more popular due to its centralized network administration, adaptability, and speed. However, the centralized structure of SDN architecture makes assaults more prevalent. The attacks affect normal users by draining server resources, reducing internet speed, and occupying memory on controllers and switches. Therefore, security for SDN is essential. Most of the existing attack detection methods for SDN are based on statistical and machine learning-based techniques. In statistical techniques, determining an accurate threshold is difficult due to dynamic nature of the network flow. For machine learning-based techniques, it can be difficult to identify a suitable feature that can distinguish assaults from regular traffic. Therefore, this work presents an effective deep learning-based framework to identify network threats in SDN. This framework comprises a data augmentation generative adversarial network (DAGAN), Xception, and improved ShuffleNetV2 models. First, DAGAN is used to increase data samples and reduce class imbalance problem in the dataset. Then, Xception network extracts the essential features, and finally, intrusions are identified and categorized using an improved ShuffleNetV2 network. When a network intrusion is discovered, the suggested defense mechanism is turned on to restore normal network connectivity quickly. Several tests are carried out on two SDN-based datasets, and our proposed approach surpasses existing models by achieving 89.63% and 98.96% accuracy for InSDN and Ton-IoT datasets, respectively. Additionally, our suggested model delivers a fair trade-off between recall and precision that qualifies it for attack categorization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be available on request.

References

  1. Maddu, M., Rao, Y.N.: Network intrusion detection and mitigation in SDN using deep learning models. Int. J. Inf. Secur. (2023). https://doi.org/10.1007/s10207-023-00771-2

    Article  Google Scholar 

  2. Shaji, N.S., Muthalagu, R., Pawar, P.M.: SD-IIDS: intelligent intrusion detection system for software-defined networks. Multimed. Tools Appl. (2023). https://doi.org/10.1007/s11042-023-15725-y

    Article  Google Scholar 

  3. Kumar, C., Biswas, S., Ansari, M.S.A., Govil, M.C.: Nature-inspired intrusion detection system for protecting software-defined networks controller. Comput. Secur. 134, 103438 (2023). https://doi.org/10.1016/j.cose.2023.103438

    Article  Google Scholar 

  4. Hormozi, M., Erfani, S.H.: An SDN-based DDoS defense approach using route obfuscation. Concurren. Computat. Practice Exp. 35(1), e7439 (2023). https://doi.org/10.1002/cpe.7439

    Article  Google Scholar 

  5. Jin, Z., Zhou, J., Li, B., Wu, X., Duan, C.: FL-IIDS: a novel federated learning-based incremental intrusion detection system. Futur. Gener. Comput. Syst. 151, 57–70 (2024). https://doi.org/10.1016/j.future.2023.09.019

    Article  Google Scholar 

  6. Hnamte, V., Hussain, J.: An efficient DDoS attack detection mechanism in SDN environment. Int J Inf Technol. (2023). https://doi.org/10.21203/rs.3.rs-2393388/v2

  7. Ariffin, S.H., Le Chong, J., Latif, N.M.A.A., Abd Malik, N.N.N., Baharudin, M.A., Syed-Yusof, S.K., Yusof, K.M.: Intrusion detection system (IDS) accuracy testing for software defined network internet of things (SDN-IOT) testbed. ELEKTRIKA-J. Electric. Eng. 21(3), 23–27 (2022). https://doi.org/10.11113/elektrika.v21n3.361

    Article  Google Scholar 

  8. Chowdhury, R., Sen, S., Roy, A., Saha, B.: An optimal feature based network intrusion detection system using bagging ensemble method for real-time traffic analysis. Multimed. Tools Appl. 81(28), 41225–41247 (2022). https://doi.org/10.1007/s11042-022-12330-3

    Article  Google Scholar 

  9. Suresh Babu, D., Ramakrishnan, M.: Enhanced lion optimization algorithm and deep belief network for intrusion detection with SDN enabled IoT networks. J. Intell. Fuzzy Syst. (2023). https://doi.org/10.3233/JIFS-232532

    Article  Google Scholar 

  10. Tayfour, O.E., Mubarakali, A., Tayfour, A.E., Marsono, M.N., Hassan, E., Abdelrahman, A.M.: Adapting deep learning-LSTM method using optimized dataset in SDN controller for secure IoT. Soft Comput. (2023). https://doi.org/10.1007/s00500-023-08348-w

    Article  Google Scholar 

  11. Ahalawat, A., Babu, K.S., Turuk, A.K., Patel, S.: A low-rate DDoS detection and mitigation for SDN using Renyi entropy with packet drop. J. Inf. Secur. Appl. 68, 103212 (2022). https://doi.org/10.1016/j.jisa.2022.103212

    Article  Google Scholar 

  12. Yungaicela-Naula, N.M., Vargas-Rosales, C., Pérez-Díaz, J.A.: Sdn/nfv-based framework for autonomous defense against slow-rate ddos attacks by using reinforcement learning. Futur. Gener. Comput. Syst. 149, 637–649 (2023). https://doi.org/10.1016/j.future.2023.08.007

    Article  Google Scholar 

  13. Swami, R., Dave, M., Ranga, V.: Mitigation of DDoS attack using moving target defense in SDN. Wireless Personal Commun. (2023). https://doi.org/10.1007/s11277-023-10544-8

    Article  Google Scholar 

  14. Jadhav, K.P., Arjariya, T., Gangwar, M.: Hybrid-Ids: an approach for intrusion detection system with hybrid feature extraction technique using supervised machine learning. Int. J. Intell. Syst. Appl. Eng. 11(5s), 591–597 (2023)

    Google Scholar 

  15. Hammad, M., Hewahi, N., Elmedany, W.: Enhancing network intrusion recovery in SDN with machine learning: an innovative approach. Arab J. Basic Appl. Sci. 30(1), 561–572 (2023). https://doi.org/10.1080/25765299.2023.2261219

    Article  Google Scholar 

  16. Qureshi, S.S., He, J., Qureshi, S., Zhu, N., Zardari, Z.A., Mahmood, T., Wajahat, A.: SDN-enabled deep learning based detection mechanism (DDM) to tackle DDoS attacks in IoTs. J. Intell. Fuzzy Syst. 44(6), 10675–10687 (2023). https://doi.org/10.3233/JIFS-220932

    Article  Google Scholar 

  17. Huang, H., Li, T., Ding, Y., Li, B., Liu, A.: An artificial immunity based intrusion detection system for unknown cyberattacks. Appl. Soft Comput. 148, 110875 (2023). https://doi.org/10.1016/j.asoc.2023.110875

    Article  Google Scholar 

  18. Chowdhury, R., Sen, S., Goswami, A., Purkait, S., Saha, B.: An implementation of bi-phase network intrusion detection system by using real-time traffic analysis. Expert Syst. Appl. 224, 119831 (2023). https://doi.org/10.1016/j.eswa.2023.119831

    Article  Google Scholar 

  19. Tang, D., Gao, C., Li, X., Liang, W., Xiao, S., Yang, Q.: A detection and mitigation scheme of LDoS Attacks via SDN Based on the FSS-RSR Algorithm. IEEE Trans. Netw. Sci. Eng. (2023). https://doi.org/10.1109/TNSE.2023.3236970

    Article  Google Scholar 

  20. Priyadarshini, I., Mohanty, P., Alkhayyat, A., Sharma, R., Kumar, S.: SDN and application layer DDoS attacks detection in IoT devices by attention-based Bi-LSTM-CNN. Trans. Emerg. Telecommun. Technol. (2023). https://doi.org/10.1002/ett.4758

    Article  Google Scholar 

  21. Ali, T.E., Chong, Y.W., Manickam, S.: Comparison of ML/DL Approaches for Detecting DDoS Attacks in SDN. Appl. Sci. 13(5), 3033 (2023). https://doi.org/10.3390/app13053033

    Article  Google Scholar 

  22. Logeswari, G., Bose, S., Anitha, T.: An intrusion detection system for sdn using machine learning. Intell. Automat. Soft. Comput 35(1), 867–880 (2023). https://doi.org/10.32604/iasc.2023.026769

    Article  Google Scholar 

  23. Saritha Reddy, A., Ramasubba Reddy, B., Suresh Babu, A.: An improved intrusion detection system for SDN using multistage optimized deep forest classifier. Int. J. Comput. Sci. Netw. Secur. 22(4), 374–386 (2022). https://doi.org/10.22937/IJCSNS.2022.22.4.44

    Article  Google Scholar 

  24. Khedr, W.I., Gouda, A.E., Mohamed, E.R.: FMDADM: a multi-layer DDoS attack detection and mitigation framework using machine learning for stateful SDN-based IoT networks. IEEE Access 11, 28934–28954 (2023). https://doi.org/10.1109/ACCESS.2023.3260256

    Article  Google Scholar 

  25. Chaganti, R., Suliman, W., Ravi, V., Dua, A.: Deep learning approach for SDN-enabled intrusion detection system in IoT networks. Information 14(1), 41 (2023). https://doi.org/10.3390/info14010041

    Article  Google Scholar 

  26. Ravi, V., Chaganti, R., Alazab, M.: Deep learning feature fusion approach for an intrusion detection system in SDN-based IoT networks. IEEE Internet of Things Magazine 5(2), 24–29 (2022). https://doi.org/10.1109/IOTM.003.2200001

    Article  Google Scholar 

  27. Chen, L., Wang, Z., Huo, R., Huang, T.: An adversarial DBN-LSTM method for detecting and defending against DDoS attacks in SDN environments. Algorithms 16(4), 197 (2023). https://doi.org/10.3390/a16040197

    Article  Google Scholar 

  28. Safwan, H., Iqbal, Z., Amin, R., Khan, M.A., Alhaisoni, M., Alqahtani, A., Chang, B.: An IoT environment based framework for intelligent intrusion detection. CMC-Comput. Mater. Continua 75(2), 2365–2381 (2023). https://doi.org/10.32604/cmc.2023.033896

    Article  Google Scholar 

  29. ElSayed, M.S., Le-Khac, N.A., Albahar, M.A., Jurcut, A.: A novel hybrid model for intrusion detection systems in SDNs based on CNN and a new regularization technique. J. Netw. Comput. Appl. 191, 103160 (2021). https://doi.org/10.1016/j.jnca.2021.103160

    Article  Google Scholar 

  30. Duy, P.T., Khoa, N.H., Do Hoang, H., Pham, V.H.: Investigating on the robustness of flow-based intrusion detection system against adversarial samples using generative adversarial networks. J. Inf. Secur. Appl. 74, 103472 (2023). https://doi.org/10.1016/j.jisa.2023.103472

    Article  Google Scholar 

  31. Friha, O., Ferrag, M.A., Shu, L., Maglaras, L., Choo, K.K.R., Nafaa, M.: FELIDS: federated learning-based intrusion detection system for agricultural Internet of Things. J. Parallel Distrib. Comput. 165, 17–31 (2022). https://doi.org/10.1016/j.jpdc.2022.03.003

    Article  Google Scholar 

  32. Aouedi, O., Piamrat, K.: F-BIDS: federated-blending based intrusion detection system. Pervasive Mob. Comput. 89, 101750 (2023). https://doi.org/10.1016/j.pmcj.2023.101750

    Article  Google Scholar 

  33. Elsayed, R.A., Hamada, R.A., Abdalla, M.I., Elsaid, S.A.: Securing IoT and SDN systems using deep-learning based automatic intrusion detection. Ain Shams Eng. J. 14(10), 102211 (2023). https://doi.org/10.1016/j.asej.2023.102211

    Article  Google Scholar 

  34. Sarhan, M., Layeghy, S., Moustafa, N., Gallagher, M., Portmann, M.: Feature extraction for machine learning-based intrusion detection in IoT networks. Dig. Commun. Netw. (2022). https://doi.org/10.1016/j.dcan.2022.08.012

    Article  Google Scholar 

  35. Amaouche, S., Guezzaz, A., Benkirane, S., Azrour, M., Khattak, S.B.A., Farman, H., Nasralla, M.M.: FSCB-IDS: feature selection and minority class balancing for attacks detection in VANETS. Appl. Sci. 13(13), 7488 (2023). https://doi.org/10.3390/app13137488

    Article  Google Scholar 

  36. Gad, A.R., Nashat, A.A., Barkat, T.M.: Intrusion detection system using machine learning for vehicular ad hoc networks based on ToN-IoT dataset. IEEE Access 9, 142206–142217 (2021). https://doi.org/10.1109/ACCESS.2021.3120626

    Article  Google Scholar 

  37. Altaf, T., Wang, X., Ni, W., Yu, G., Liu, R.P., Braun, R.: A new concatenated multigraph neural network for IoT intrusion detection. Internet Things 22, 100818 (2023). https://doi.org/10.1016/j.iot.2023.100818

    Article  Google Scholar 

Download references

Acknowledgements

We declare that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere.

Author information

Authors and Affiliations

Authors

Contributions

The author confirms sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

Corresponding author

Correspondence to Ajith Jubilson Emerson.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

This material is the authors’ own original work, which has not been previously published elsewhere. The paper reflects the authors’ own research and analysis in a truthful and complete manner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, D.S., Emerson, A.J. Cyberattack defense mechanism using deep learning techniques in software-defined networks. Int. J. Inf. Secur. 23, 1279–1291 (2024). https://doi.org/10.1007/s10207-023-00785-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10207-023-00785-w

Keywords

Navigation