Skip to main content
Log in

TENET: a new hybrid network architecture for adversarial defense

  • Regular contribution
  • Published:
International Journal of Information Security Aims and scope Submit manuscript

Abstract

Deep neural network (DNN) models are widely renowned for their resistance to random perturbations. However, researchers have found out that these models are indeed extremely vulnerable to deliberately crafted and seemingly imperceptible perturbations of the input, referred to as adversarial examples. Adversarial attacks have the potential to substantially compromise the security of DNN-powered systems and posing high risks especially in the areas where security is a top priority. Numerous studies have been conducted in recent years to defend against these attacks and to develop more robust architectures resistant to adversarial threats. In this study, we propose a new architecture and enhance a recently proposed technique by which we can restore adversarial samples back to their original class manifold. We leverage the use of several uncertainty metrics obtained from Monte Carlo dropout (MC Dropout) estimates of the model together with the model’s own loss function and combine them with the use of defensive distillation technique to defend against these attacks. We have experimentally evaluated and verified the efficacy of our approach on MNIST (Digit), MNIST (Fashion) and CIFAR10 datasets. In our experiments, we showed that our proposed method reduces the attack’s success rate lower than 5% without compromising clean accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Datasets used in the manuscript can be found at: http://yann.lecun.com/exdb/mnist/, https://github.com/zalandoresearch/fashion-mnist, https://www.cs.toronto.edu/kriz/cifar.html.

Notes

  1. https://github.com/omerfaruktuna/TENET-Adversarial-Defense.

  2. We use Torch 1.13.0 to implement the attacks and the proposed defense method in a computer with processor Intel Core i5-1145G7 2.6 GHz and Windows 10 OS.

References

  1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). arXiv:1512.03385

  2. Goodfellow, I.J., Bulatov, Y., Ibarz, J., Arnoud, S., Shet, V.: Multi-digit number recognition from street view imagery using deep convolutional neural networks (2014). arXiv:1312.6082

  3. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks (2014). arXiv:1312.6199

  4. Sato, M., Suzuki, J., Shindo, H., Matsumoto, Y.: Interpretable adversarial perturbation in input embedding space for text (2018). arXiv:1805.02917

  5. Carlini, N., Wagner, D.: Audio adversarial examples: Targeted attacks on speech-to-text (2018). arXiv:1801.01944

  6. Finlayson, S.G., Chung, H.W., Kohane, I.S., Beam, A.L.: Adversarial attacks against medical deep learning systems (2019). arXiv:1804.05296

  7. Sitawarin, C., Bhagoji, A.N., Mosenia, A., Chiang, M., Mittal, P.: Darts: Deceiving autonomous cars with toxic signs (2018). arXiv:1802.06430

  8. Morgulis, N., Kreines, A., Mendelowitz, S., Weisglass, Y.: Fooling a real car with adversarial traffic signs (2019). arXiv:1907.00374

  9. Tuna, O.F., Catak, F.O., Eskil, M.T.: Uncertainty as a swiss army knife: new adversarial attack and defense ideas based on epistemic uncertainty. Complex Intell. Syst. https://doi.org/10.1007/s40747-022-00701-0

  10. Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun, Y., Thamo, E., Wu, M., Yi, X.: A survey of safety and trustworthiness of deep neural networks: verification, testing, adversarial attack and defence, and interpretability. Comput. Sci. Rev. 37, 100270 (2020). https://doi.org/10.1016/j.cosrev.2020.100270

    Article  MathSciNet  MATH  Google Scholar 

  11. Catak, F.O., Sivaslioglu, S., Sahinbas, K.: A generative model based adversarial security of deep learning and linear classifier models (2020). arXiv:2010.08546

  12. Qayyum, A., Usama, M., Qadir, J., Al-Fuqaha, A.: Securing connected autonomous vehicles: challenges posed by adversarial machine learning and the way forward. IEEE Commun. Surv. Tutor. 22(2), 998–1026 (2020). https://doi.org/10.1109/COMST.2020.2975048

    Article  Google Scholar 

  13. Sadeghi, K., Banerjee, A., Gupta, S.K.S.: A system-driven taxonomy of attacks and defenses in adversarial machine learning. IEEE Trans. Emerg. Top. Comput. Intell. 4(4), 450–467 (2020). https://doi.org/10.1109/TETCI.2020.2968933

    Article  Google Scholar 

  14. Zheng, Z., Hong, P.: Robust detection of adversarial attacks by modeling the intrinsic properties of deep neural networks. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, Curran Associates, Inc. (2018). https://proceedings.neurips.cc/paper/2018/file/e7a425c6ece20cbc9056f98699b53c6f-Paper.pdf

  15. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples (2015). arXiv:1412.6572

  16. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world (2017). arXiv:1607.02533

  17. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial machine learning at scale. CoRR arXiv:1611.01236

  18. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks (2019). arXiv:1706.06083

  19. Moosavi-Dezfooli, S.-M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks (2016). arXiv:1511.04599

  20. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks (2017). arXiv:1608.04644

  21. Andriushchenko, M., Croce, F., Flammarion, N., Hein, M.: Square attack: a query-efficient black-box adversarial attack via random search (2020). arXiv:1912.00049

  22. Chen, J., Jordan, M.I., Wainwright, M.J.: Hopskipjumpattack: A query-efficient decision-based attack. In: IEEE Symposium on Security and Privacy (SP) 2020, pp. 1277–1294 (2020). https://doi.org/10.1109/SP40000.2020.00045

  23. Ilyas, A., Engstrom, L., Madry, A.: Prior convictions: Black-box adversarial attacks with bandits and priors (2019). arXiv:1807.07978

  24. Tuna, O.F., Catak, F.O., Eskil, M.T.: Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples. Multimedia Tools Appl. 81(8), 11479–11500 (2022). https://doi.org/10.1007/s11042-022-12132-7

    Article  Google Scholar 

  25. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015). arXiv:1503.02531

  26. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks (2016). arXiv:1511.04508

  27. Liao, F., Liang, M., Dong, Y., Pang, T., Hu, X., Zhu, J.: Defense against adversarial attacks using high-level representation guided denoiser (2018). arXiv:1712.02976

  28. Shen, S., Jin, G., Gao, K., Zhang, Y.: Ape-gan: Adversarial perturbation elimination with gan (2017). arXiv:1707.05474

  29. Raghunathan, A., Steinhardt, J., Liang, P.: Certified defenses against adversarial examples (2020). arXiv:1801.09344

  30. Tuna, O.F., Catak, F.O., Eskil, M.T.: Closeness and uncertainty aware adversarial examples detection in adversarial machine learning (2020). arXiv:2012.06390

  31. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods (2020). arXiv:1910.09457

  32. An, D., Liu, J., Zhang, M., Chen, X., Chen, M., Sun, H.: Uncertainty modeling and runtime verification for autonomous vehicles driving control: a machine learning-based approach. J. Syst. Softw. 167, 110617 (2020)

    Article  Google Scholar 

  33. Zheng, R., Zhang, S., Liu, L., Luo, Y., Sun, M.: Uncertainty in bayesian deep label distribution learning. Appl. Soft Comput. 101, 107046 (2021). https://doi.org/10.1016/j.asoc.2020.107046

    Article  Google Scholar 

  34. Antonelli, F., Cortellessa, V., Gribaudo, M., Pinciroli, R., Trivedi, K.S., Trubiani, C.: Analytical modeling of performance indices under epistemic uncertainty applied to cloud computing systems. Future Gen. Comput. Syst. 102, 746–761 (2020). https://doi.org/10.1016/j.future.2019.09.006

    Article  Google Scholar 

  35. Zhou, D.-X.: Universality of deep convolutional neural networks (2018). arXiv:1805.10769

  36. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. (MCSS) 2(4), 303–314 (1989). https://doi.org/10.1007/BF02551274

    Article  MathSciNet  MATH  Google Scholar 

  37. Loquercio, A., Segu, M., Scaramuzza, D.: general framework for uncertainty estimation in deep learning. IEEE Robot. Autom. Lett. 5(2), 3153–3160 (2020). https://doi.org/10.1109/LRA.2020.2974682

    Article  Google Scholar 

  38. Gurevich, P., Stuke, H.: Pairing an arbitrary regressor with an artificial neural network estimating aleatoric uncertainty. Neurocomputing 350, 291–306 (2019). https://doi.org/10.1016/j.neucom.2019.03.031

    Article  Google Scholar 

  39. Senge, R., Bösner, S., Dembczyński, K., Haasenritter, J., Hirsch, O., Donner-Banzhoff, N., Hüllermeier, E.: Reliable classification: learning classifiers that distinguish aleatoric and epistemic uncertainty. Inf. Sci. 255, 16–29 (2014). https://doi.org/10.1016/j.ins.2013.07.030

    Article  MathSciNet  MATH  Google Scholar 

  40. Reinhold, J.C., He, Y., Han, S., Chen, Y., Gao, D., Lee, J., Prince, J.L., Carass, A.: Finding novelty with uncertainty (2020). arXiv:2002.04626

  41. Graves, A.: Practical variational inference for neural networks. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 24, pp. 2348–2356. Curran Associates Inc, London (2011)

    Google Scholar 

  42. Paisley, J., Blei, D., Jordan, M.: Variational bayesian inference with stochastic search (2012). arXiv:1206.6430

  43. Hoffman, M., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference (2013). arXiv:1206.7051

  44. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural networks (2015). arXiv:1505.05424

  45. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles (2017). arXiv:1612.01474

  46. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncertainty in deep learning (2016). arXiv:1506.02142

  47. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision? (2017). arXiv:1703.04977

  48. Kwon, Y., Won, J.-H., Kim, B.J., Paik, M.C.: Uncertainty quantification using Bayesian neural networks in classification: application to biomedical image segmentation. Comput. Stat. Data Anal. 142, 106816 (2020). https://doi.org/10.1016/j.csda.2019.106816

    Article  MathSciNet  MATH  Google Scholar 

  49. Aladag, M., Catak, F.O., Gul, E.: Preventing data poisoning attacks by using generative models. In: 2019 1st International Informatics and Software Engineering Conference (UBMYK), pp. 1–5 (2019). https://doi.org/10.1109/UBMYK48245.2019.8965459

  50. Carlini, N., Athalye, A., Papernot, N., Brendel, W., Rauber, J., Tsipras, D., Goodfellow, I., Madry, A., Kurakin, A.: On evaluating adversarial robustness (2019). arXiv:1902.06705

  51. LeCun, Y., Cortes, C.: MNIST handwritten digit database. http://yann.lecun.com/exdb/mnist/

  52. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms (2017). arXiv:1708.07747

  53. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (canadian institute for advanced research). http://www.cs.toronto.edu/~kriz/cifar.html

  54. Rauber, J., Brendel, W., Bethge, M.: Foolbox: A python toolbox to benchmark the robustness of machine learning models (2018). arXiv:1707.04131

  55. Ding, G. W., Wang, L., Jin, X.: advertorch v0.1: An adversarial robustness toolbox based on pytorch (2019). arXiv:1902.07623

  56. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples (2018). arXiv:1802.00420

  57. Katzir, Z., Elovici, Y.: Why blocking targeted adversarial perturbations impairs the ability to learn (2019). arXiv:1907.05718

  58. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015). arXiv:1409.1556

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) through the 1515 Frontier Research and Development Laboratories Support Program under Project 5169902, and has been partly funded by the European Union’s Horizon Europe research and innovation programme and Smart Networks and Services Joint Undertaking (SNS JU) under Grant Agreement No: 101096034 (VERGE Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Faruk Tuna.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare. All co-authors have seen and agreed with the contents of the manuscript. We certify that the submission is original work and is not under review at any other publication.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuna, O.F., Catak, F.O. & Eskil, M.T. TENET: a new hybrid network architecture for adversarial defense. Int. J. Inf. Secur. 22, 987–1004 (2023). https://doi.org/10.1007/s10207-023-00675-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10207-023-00675-1

Keywords

Navigation