Skip to main content

A systematic literature review on wearable health data publishing under differential privacy


Wearable devices generate different types of physiological data about the individuals. These data can provide valuable insights for medical researchers and clinicians that cannot be availed through traditional measures. Researchers have historically relied on survey responses or observed behavior. Interestingly, physiological data can provide a richer amount of user cognition than that obtained from any other sources, including the user himself. Therefore, the inexpensive consumer-grade wearable devices have become a point of interest for the health researchers. In addition, they are also used in continuous remote health monitoring and sometimes by the insurance companies. However, the biggest concern for such kind of use cases is the privacy of the individuals. A few privacy mechanisms, such as abstraction and k-anonymity, are widely used in information systems. Recently, differential privacy (DP) has emerged as a proficient technique to publish privacy sensitive data, including data from wearable devices. In this paper, we have conducted a systematic literature review (SLR) to identify, select and critically appraise researches in DP as well as to understand different techniques and exiting use of DP in wearable data publishing. Based on our study, we have identified the limitations of proposed solutions and provided future directions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. Armonk. Ibm and partners to transform personal health with watson and open cloud. (13 Apr 2015). [Online; accessed August 17, 2020]

  2. Gowtham, M., Ahila, S.S.: In: 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS) (IEEE, 2017), pp. 1–5

  3. Yüksel, B., Küpçü, A., Özkasap, Ö.: Wearable medical devices-Design challenges and issues. Future Generat. Comput. Syst. 68, 1 (2017)

    Google Scholar 

  4. Assistance, H.C.: Office for Civil Rights (2003)

  5. O’Keefe, C.M., Connolly, C.: Regulation and perception concerning the use of health data for research in Australia. Electron. J. Health Inform. 6(2), 16 (2011)

    Google Scholar 

  6. Grubb, Ben. Thousands of medical histories exposed in data breach. (August 7, 2019). [Online; accessed 7-November-2020]

  7. Altop, D.K., Levi, A., Tuzcu, V.: In: 2015 9th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) (IEEE, 2015), pp. 92–99

  8. Chowdhury, M.J.M., Pal, T.: In; 2009 International Conference on Electronic Computer Technology (IEEE, 2009), pp. 541–544

  9. Ji, Y., Zhang, J., Ma, J., Yang, C., Yao, X.: BMPLS: blockchain-based multi-level privacy-preserving location sharing scheme for telecare medical information systems. J. Med. Syst. 42(8), 147 (2018)

    Google Scholar 

  10. Loukil, F., Ghedira-Guegan, C., Boukadi, K., Benharkat, A.N.: In International Conference on Web Information Systems Engineering (Springer, 2018), pp. 68–78

  11. Chen, X., Wang, X., Yang, K.: In: 2019 IEEE International Conference on Big Data (Big Data) (2019), pp. 5469–5473

  12. Alnemari, A., Arodi, S., Sosa, V.R., Pandey, S., Romanowski, C., Raj, R., Mishra, S.: In: International Conference on Critical Infrastructure Protection (Springer, 2018), pp. 113–125

  13. Zyskind, G., Nathan, O., Pentland, A.: In: 2015 IEEE Security and Privacy Workshops (2015), pp. 180–184

  14. Clifton, C., Tassa, T.: In: 2013 IEEE 29th International Conference on Data Engineering Workshops (ICDEW) (IEEE, 2013), pp. 88–93

  15. Kohlmayer, F., Prasser, F., Eckert, C., Kemper, A., Kuhn, K.A.: In: 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing (IEEE, 2012), pp. 708–717

  16. Prasser, F., Kohlmayer, F., Lautenschlaeger, R., Kuhn, K.A.: In: AMIA Annual Symposium Proceedings, vol. 2014 (American Medical Informatics Association, 2014), vol. 2014, p. 984

  17. El Emam, K., Dankar, F.K., Issa, R., Jonker, E., Amyot, D., Cogo, E., Corriveau, J.P., Walker, M., Chowdhury, S., Vaillancourt, R., et al.: A globally optimal k-anonymity method for the de-identification of health data. J. Am. Med. Inf. Assoc. 16(5), 670 (2009)

    Google Scholar 

  18. Li, N., Qardaji, W.H., Su, D., Provably private data anonymization: Or, k-anonymity meets differential privacy. CoRR, abs/1101.2604 49, 55 (2011)

  19. Chowdhury, M.J.M., Colman, A., Han, J., Kabir, M.A.: In: Proceedings of the 51rd Hawaii International Conference on System Sciences (2018), pp. 1–10.

  20. Chowdhury, M.J.M., Colman, A., Kabir, M.A., Han, J., Sarda, P.: In: 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE) (IEEE, 2019), pp. 327–333

  21. Chowdhury, M.J.M., Colman, A., Han, J., Kabir, M.A.: In Proceedings of the Australasian Computer Science Week Multiconference (2018), pp. 1–10

  22. Dwork, C.: In: International conference on theory and applications of models of computation (Springer, 2008), pp. 1–19

  23. Soria-Comas, J., Domingo-Ferrer, J., Sánchez, D., Martínez, S.: Enhancing data utility in differential privacy via microaggregation-based-anonymity. VLDB J. 23(5), 771 (2014)

    Google Scholar 

  24. Hutchinson, A.: Facebook outlines new differential privacy framework to protect user information in shared datasets. (June 3, 2020). [Online; accessed 13-09-2020]

  25. Erlingsson, Ú., Pihur, V., Korolova, A.: In: Proceedings of the 2014 ACM SIGSAC conference on computer and communications security (2014), pp. 1054–1067

  26. Uber becomes the latest company to embrace differential privacy. (Jul 14, 2017). [Online; accessed September 13, 2020]

  27. T. Zhu, G. Li, W. Zhou, S.Y. Philip, Differential privacy and applications, vol. 69 (Springer, 2017)

  28. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: Protecting privacy and security of genomic data in I2B2 with homomorphic encryption and differential privacy. SIAM J. Comput. 40(3), 793 (2011)

    MathSciNet  Google Scholar 

  29. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (IEEE, 2013), pp. 429–438

  30. Dwork, C., Roth, A. et al.: An adaptive approach to real-time aggregate monitoring with differential privacy. Foundations and Trends®in Theoretical Computer Science 9(3–4), 211 (2014)

  31. Poongodi, T., Krishnamurthi, R., Indrakumari, R., Suresh, P., Balusamy, B.: In: A Handbook of Internet of Things in Biomedical and Cyber Physical System (Springer, 2020), pp. 245–273

  32. Cooper, L.: Medical-grade devices vs. consumer wearables. (2nd July 2019). [Online; accessed September 16, 2020]

  33. Mammadzada, K., Iqbal, M., Milani, F., García-Bañuelos, L., Matulevičius, R.: In: International Conference on Business Process Management (Springer, 2020), pp. 19–34

  34. Okoli, C.: A guide to conducting a standalone systematic literature review. Commun. Assoc. Inf. Syst. 37(1), 43 (2015)

    Google Scholar 

  35. Fink, A.: Conducting research literature reviews: from the internet to paper. Thousand Oaks, Thousand Oaks (2019)

    Google Scholar 

  36. Moher, D., Altman, D.G., Liberati, A., Tetzlaff, J.: PRISMA statement. Epidemiology 22(1), 128 (2011)

    Google Scholar 

  37. Lin, C., Song, Z., Song, H., Zhou, Y., Wang, Y., Wu, G.: Differential privacy preserving in big data analytics for connected health. J. Med. Syst. 40(4), 97 (2016)

    Google Scholar 

  38. Lin, C., Wang, P., Song, H., Zhou, Y., Liu, Q., Wu, G.: A differential privacy protection scheme for sensitive big data in body sensor networks. Ann. Telecommun. 71(9–10), 465 (2016)

    Google Scholar 

  39. Hadian, M., Liang, X., Altuwaiyan, T., Mahmoud, M.M.: In: 2016 IEEE Global Communications Conference (GLOBECOM) (IEEE, 2016), pp. 1–6

  40. Prema, K., Sriharsha, A.: Differential privacy in big data analytics for haptic applications. Technology 8(3), 11 (2017)

    Google Scholar 

  41. Zhang, J., Liang, X., Zhang, Z., He, S., Shi, Z.: In: GLOBECOM 2017-2017 IEEE Global Communications Conference (IEEE, 2017), pp. 1–6

  42. Han, S., Zhao, S., Li, Q., Ju, C.H., Zhou, W.: PPM-HDA: privacy-preserving and multifunctional health data aggregation with fault tolerance. IEEE Trans. Inf. Forensics Secur. 11(9), 1940 (2015)

    Google Scholar 

  43. Guan, Z., Lv, Z., Du, X., Wu, L., Guizani, M.: Achieving data utility-privacy tradeoff in Internet of medical things: a machine learning approach. Future Generat. Comput. Syst. 98, 60 (2019)

    Google Scholar 

  44. Kim, J.W., Lim, J.H., Moon, S.M., Yoo, H., Jang, B.: In: 2019 IEEE International Conference on Consumer Electronics (ICCE) (IEEE, 2019), pp. 1–4

  45. Kim, J.W., Lim, J.H., Moon, S.M., Jang, B.: Collecting health lifelog data from smartwatch users in a privacy-preserving manner. IEEE Trans. Consumer Electron. 65(3), 369 (2019)

    Google Scholar 

  46. Lim, J.H., Kim, J.W.: Privacy-preserving iot data collection in fog-cloud computing environment. J. Korea Soc. Comput. Inf. 24(9), 43 (2019)

    Google Scholar 

  47. Ren, H., Li, H., Liang, X., He, S., Dai, Y., Zhao, L.: Privacy-enhanced and multifunctional health data aggregation under differential privacy guarantees. Sensors 16(9), 1463 (2016)

    Google Scholar 

  48. J.W. Kim, B. Jang, H. Yoo, Privacy-preserving aggregation of personal health data streams. PloS one 13(11) (2018)

  49. Zhang, Z., Han, B., Chao, H.C., Sun, F., Uden, L., Tang, D.: A new weight and sensitivity based variable maximum distance to average vector algorithm for wearable sensor data privacy protection. IEEE Access 7, 104045 (2019)

    Google Scholar 

  50. Steil, J., Hagestedt, I., Huang, M.X., Bulling, A.: In: Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications (2019), pp. 1–9

  51. Zhang, Y., Qu, Y., Gao, L., Luan, T.H., Zheng, X., Chen, S., Xiang, Y.: APDP: Attack-Proof Personalized Differential Privacy Model for a Smart Home. IEEE Access 7, 166593 (2019)

    Google Scholar 

  52. Saleheen, N., Chakraborty, S., Ali, N., Rahman, M.M., Hossain, S.M., Bari, R., Buder, E., Srivastava, M., Kumar, S.: In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (2016), pp. 706–717

  53. Bozkir, E., Günlü, O., Fuhl, W., Schaefer, R.F., Kasneci, E.: arXiv preprint arXiv:2002.08972 (2020)

  54. Ukil, A., Jara, A.J., Marin, L.: Data-driven automated cardiac health management with robust edge analytics and de-risking. Sensors 19(12), 2733 (2019)

    Google Scholar 

  55. Fan, L., Xiong, L.: In: Proceedings of the 21st ACM international conference on Information and knowledge management (2012), pp. 2169–2173

  56. Wang, J., Zhu, R., Liu, S.: A differentially private unscented Kalman filter for streaming data in IoT. IEEE Access 6, 6487 (2018)

    Google Scholar 

  57. Rastogi, V., Nath, S.: In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data (2010), pp. 735–746

  58. Shi, E., Chan, T.H., Rieffel, E., Chow, R., Song, D.: In Proc. NDSS, vol. 2 (Citeseer, 2011), vol. 2, pp. 1–17

  59. Cao, Y., Xiong, L., Yoshikawa, M., Xiao, Y., Zhang, S.: ConTPL: controlling temporal privacy leakage in differentially private continuous data release. Proc. VLDB Endowm. 11(12), 2090 (2018)

    Google Scholar 

  60. Wang, Q., Zhang, Y., Lu, X., Wang, Z., Qin, Z., Ren, K.: In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (IEEE, 2016), pp. 1–9

  61. Gao, R., Ma, X.: In: 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom) (IEEE, 2018), pp. 737–743

  62. Fan, L., Xiong, L.: An adaptive approach to real-time aggregate monitoring with differential privacy. IEEE Trans. Knowl. Data Eng. 26(9), 2094 (2013)

    Google Scholar 

  63. Kellaris, G., Papadopoulos, S., Xiao, X., Papadias, D.: Kellaris, georgios and papadopoulos, stavros and xiao, xiaokui and papadias. Dimitris. Proc. VLDB Endow. 7(12), 1155–1166 (2014)

    Google Scholar 

  64. Nguyên, T.T., Xiao, X., Yang, Y., Hui, S.C., Shin, H., Shin, J.: arXiv preprint arXiv:1606.05053 (2016)

  65. Yang, M.: Improving privacy preserving in modern applications. Deakin University, Tech. rep. (2019)

  66. Asikis, T., Pournaras, E.: Optimization of privacy-utility trade-offs under informational self-determination. Future Gener. Comput. Syst. 109, 488 (2020)

    Google Scholar 

  67. Luo, C., Liu, X., Xue, W., Shen, Y., Li, J., Hu, W., Liu, A.X.: Predictable privacy-preserving mobile crowd sensing: a tale of two roles. IEEE/ACM Trans. Network. 27(1), 361 (2019)

    Google Scholar 

  68. Wikipedia contributors. Haar wavelet — Wikipedia, the free encyclopedia. (2020). [Online; accessed August 19, 2020]

  69. Wikipedia contributors. Kalman filter — Wikipedia, the free encyclopedia (2020). [Online; accessed September 3, 2020]

  70. Wikipedia contributors. Kullback–leibler divergence — Wikipedia, the free encyclopedia. (2020). [Online; accessed 23-September-2020]

  71. Reiss, A., Stricker, D.: In: 2012 16th International Symposium on Wearable Computers (2012), pp. 108–109

  72. Fleury, A., Vacher, M., Noury, N.: SVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental results. IEEE Trans. Inf. Technol. Biomed. 14(2), 274 (2010)

    Google Scholar 

  73. Fleury, A., Noury, N., Vacher, M.: Improving supervised classification of activities of daily living using prior knowledge. Int. J. E-Health Med. Commun. 2(1), 17 (2011)

    Google Scholar 

  74. Kassner, M., Patera, W., Bulling, A.: In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication (Association for Computing Machinery, New York, NY, USA, 2014), UbiComp ’14 Adjunct, p. 1151–1160.

  75. Yeh, I.C., Yang, K.J., Ting, T.M.: Knowledge discovery on RFM model using Bernoulli sequence. Exp. Syst. Appl. 36(3), 5866 (2009)

    Google Scholar 

  76. Influenza(flu) dataset. (May 15, 2020). [Online; accessed May 17, 2020]

  77. Traffic dataset. [Not Available; accessed May 17, 2020]

  78. Unemployment dataset. [Online; accessed May 17, 2020]

  79. Traffic dataset. [Not available; accessed May 17, 2020]

  80. Taxi trajectory prediction. (2015). [Online; accessed May 17, 2020]

  81. World cup dataset. [Not available; accessed 17-05-2020]

  82. Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformatica 6(2), 153 (2002)

    MATH  Google Scholar 

  83. differential-privacy. [Online; accessed October 29, 2020]

  84. Davis, V.: Google open sources their differential privacy library to help protect user’s private data. (September 6, 2019). [Online; accessed October 29, 2020]

  85. Li, H., Dai, Y., Lin, X.: In: 2015 17th International Conference on E-health Networking, Application & Services (HealthCom) (IEEE, 2015), pp. 602–608

  86. Zhao, J., Chen, Y., Zhang, W.: Differential privacy preservation in deep learning: challenges, opportunities and solutions. IEEE Access 7, 48901 (2019)

    Google Scholar 

  87. Dankar, F.K., El Emam, K.: In: Proceedings of the 2012 Joint EDBT/ICDT Workshops (Association for Computing Machinery, New York, NY, USA, 2012), EDBT-ICDT ’12, p. 158–166.

  88. Zhu, T., Xiong, P., Li, G., Zhou, W.: Correlated differential privacy: hiding information in non-IID data set. IEEE Trans. Inf. For. Secur. 10(2), 229 (2014)

    Google Scholar 

  89. Yang, B., Sato, I., Nakagawa, H.: In Proceedings of the 2015 ACM SIGMOD international conference on Management of Data (2015), pp. 747–762

  90. Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet transforms. IEEE Trans. Knowl. Data Eng. 23(8), 1200 (2011)

    Google Scholar 

  91. Wang, H., Xu, Z.: CTS-DP: publishing correlated time-series data via differential privacy. Knowl. Based Syst. 122, 167 (2017)

    Google Scholar 

  92. He, X., Cormode, G., Machanavajjhala, A., Procopiuc, C.M., Srivastava, D.: DPT: differentially private trajectory synthesis using hierarchical reference systems. Proc. VLDB Endowm. 8(11), 1154 (2015)

    Google Scholar 

  93. Sarathy, R., Muralidhar, K.: Evaluating Laplace noise addition to satisfy differential privacy for numeric data. Trans. Data Privacy 4(1), 1 (2011)

    MathSciNet  Google Scholar 

  94. Chowdhury, M.J.M., Ferdous, M.S., Biswas, K., Chowdhury, N., Kayes, A., Alazab, M., Watters, P.: A comparative analysis of distributed ledger technology platforms. IEEE Access 7(1), 167930 (2019)

  95. Xiong, Z., Zhang, Y., Niyato, D., Wang, P., Han, Z.: When mobile blockchain meets edge computing. IEEE Commun. Magaz. 56(8), 33 (2018)

    Google Scholar 

  96. Banerjee, M., Lee, J., Choo, K.K.R.: A blockchain future for internet of things security: a position paper. Digital Commun. Netw. 4(3), 149 (2018)

    Google Scholar 

  97. Chowdhury, M.J.M., Ferdous, M.S., Biswas, K., Chowdhury, N., Muthukkumarasamy, V.: A survey on blockchain-based platforms for IoT use-cases. Knowl. Eng. Rev. 35, 22 (2020)

    Google Scholar 

  98. Mettler, M.: In: 2016 IEEE 18th international conference on e-health networking, applications and services (Healthcom) (IEEE, 2016), pp. 1–3

  99. Hassan, M.U., Rehmani, M.H., Chen, J.: Differential privacy in blockchain technology: a futuristic approach. J. Parallel Distribut. Comput. 145, 50 (2020)

    Google Scholar 

  100. Zhao, Y., Zhao, J., Kang, J., Zhang, Z., Niyato, D., Shi, S., Lam, K.Y.: A blockchain-based approach for saving and tracking differential-privacy cost. IEEE Internet of Things J. 8(11), 8865 (2021)

    Google Scholar 

  101. Han, L.M., Zhao, Y., Zhao, J.: arXiv preprint arXiv:2006.04693 (2020)

  102. Zhu, T., Philip, S.Y.: In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS) (IEEE, 2019), pp. 1601–1609

  103. Shrivastva, K.M.P., Rizvi, M., Singh, S.: In: 2014 International Conference on Computational Intelligence and Communication Networks (IEEE, 2014), pp. 776–781

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mohammad Jabed Morshed Chowdhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: paper search and review

Appendix: paper search and review

Fig. 18
figure 18

PRISMA flow diagram

Table 13 Retrieved papers using logical AND & OR

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saifuzzaman, M., Ananna, T.N., Chowdhury, M.J.M. et al. A systematic literature review on wearable health data publishing under differential privacy. Int. J. Inf. Secur. 21, 847–872 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • Wearable
  • Health data
  • Real-time health data
  • Privacy
  • Differential privacy