Skip to main content
Log in

Negative representations of information

  • Regular Contribution
  • Published:
International Journal of Information Security Aims and scope Submit manuscript

Abstract

In a negative representation, a set of elements (the positive representation) is depicted by its complement set. That is, the elements in the positive representation are not explicitly stored, and those in the negative representation are. The concept, feasibility, and properties of negative representations are explored in the paper; in particular, its potential to address privacy concerns. It is shown that a positive representation consisting of n l-bit strings can be represented negatively using only O(ln) strings, through the use of an additional symbol. It is also shown that membership queries for the positive representation can be processed against the negative representation in time no worse than linear in its size, while reconstructing the original positive set from its negative representation is an \({\mathcal{NP}}\) -hard problem. The paper introduces algorithms for constructing negative representations as well as operations for updating and maintaining them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achlioptas, D., Gomes, C., Kautz, H., Selman, B.: Generating satisfiable problem instances. In: Proceedings of the 7th Conference on Artificial Intelligence (AAAI-00) and of the 12th Conference on Innovative Applications of Artificial Intelligence (IAAI-00), pp. 256–261. AAAI Press, Menlo Park (2000)

  2. Adam N.R., Wortman J.C.: Security-control methods for statistical databases. ACM Comput. Surv. 21(4), 515–556 (1989)

    Article  Google Scholar 

  3. Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy preserving data mining algorithms. In: Symposium on Principles of Database Systems, pp. 247–255 (2001)

  4. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of the ACM SIGMOD Conference on Management of Data, pp. 439–450. ACM Press, New York (2000). http://citeseer.nj.nec.com/agrawal00privacypreserving.html

  5. Benaloh, J.C., de Mare, M.: One-way accumulators: a decentralized alternative to digital signatures. In: Advances in Cryptology— EUROCRYPT ’93, pp. 274–285 (1994). http://citeseer.nj.nec.com/article/benaloh93oneway.html

  6. Blakley, G.R., Meadows, C.: A database encryption scheme which allows the computation of statistics using encrypted data. In: Proceedings of the IEEE Symposium on Research in Security and Privacy, pp. 116–122. IEEE CS Press (1985)

  7. Blum, M., Goldwasser, S.: An efficient probabilistic public-key encryption scheme which hides all partial information. In: Blakely, G.R., Chaum, D. (eds.) Advances in Cryptology: proceedings of CRYPTO 84. Lecture Notes in Computer Science, vol. 196, pp. 289–302. Springer, Berlin (1985)

  8. Brassard G.: A note on the complexity of cryptography. IEEE Trans. Inform. Theory 25(2), 232–233 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brassard, G., Fortune, S., Hopcroft, J.E.: A note on cryptography and NP\({\cap}\) coNP-P. Technical Report TR78-338, Cornell University, Computer Science Department (1978)

  10. Bryant R.E. (1992) Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992). http://citeseer.nj.nec.com/bryant92symbolic.html

  11. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) Advances in Cryptology—CRYPTO ’ 2002, Lecture Notes in Computer Science, vol. 2442, pp. 61–76. International Association for Cryptologic Research, Springer, Germany (2002). http://www.springerlink.com/link.asp?id=yklb7xdvbbc0wwgy

  12. Chin F.: Security problems on inference control for sum, max, and min queries. J. ACM 33(3), 451–464 (1986). doi:10.1145/5925.5928

    Article  MathSciNet  Google Scholar 

  13. Cook S.A., Mitchell D.G.: Finding hard instances of the satisfiability problem: A survey. In: Du, D., Gu, J., Pardalos, P.M. (eds) Satisfiability Problem: Theory and Applications, Dimacs Series in Discrete Mathematics and Theoretical Computer Science, vol 35, pp. 1–17. American Mathematical Society, Providence (1997)

    Google Scholar 

  14. Crawford J.M., Anton L.D.: Experimental results on the crossover point in satisfiability problems. In: Fikes, R., Lehnert, W. (eds) Proceedings of the Eleventh National Conference on Artificial Intelligence, pp. 21–27. American Association for Artificial Intelligence, AAAI Press, Menlo Park (1993)

    Google Scholar 

  15. Danezis, G., Diaz, G., Faust, S., Käsper, E., Troncoso, C., Preneel, B.: Efficient negative databases from cryptographic hash functions. In: LNCS (ed.). Information Security Conference, vol. 4779, pp. 423–436 (2007)

  16. Denning D.: Cryptography and Data Security. Addison Wesley, Reading (1982)

    MATH  Google Scholar 

  17. Denning D., Schlorer J.: Inference controls for statistical databases. Computer 16(7), 69–82 (1983)

    Article  Google Scholar 

  18. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second- generation onion router. In: Proceedings of the 13th USENIX Security Symposium (2004)

  19. Dobkin D., Jones A., Lipton R.: Secure databases: protection against user influence. ACM Trans. Database Syst. 4(1), 97–106 (1979)

    Article  Google Scholar 

  20. Esponda, F.: Hiding a needle in a haystack using negative databases. In: Proceedings of the 10th Information Hiding Conference (2008)

  21. Esponda F., Ackley E.S., Forrest S., Helman P.: On-line negative databases (with experimental results). Int. J. Unconvent. Comput. 1(3), 201–220 (2005)

    Google Scholar 

  22. Esponda, F., Forrest, S., Helman, P.: Enhancing privacy through negative representations of data. Technical report, University of New Mexico (2004)

  23. Esponda F., Forrest S., Helman P.: A formal framework for positive and negative detection schemes. IEEE Trans. Syst. Man Cybernet. Part B: Cybernet. 34(1), 357–373 (2004)

    Article  Google Scholar 

  24. Esponda F., Forrest S., Helman P.: Protecting data privacy through hard-to-reverse negative databases. Int. J. Inform. Security 6(6), 403–415 (2007)

    Article  Google Scholar 

  25. Esponda, F., Trias, E., Ackley, E., Forrest, S.: A relational algebra for negative databases. Tech. Rep. TR-CS-2007-18, University of New Mexico (2007)

  26. Even, S., Yacobi, Y.: Cryptography and np-completeness. In: Proc. 7th Colloq. Automata, Languages, and Programming. Lecture Notes in Computer Science, vol. 85, pp. 195–207. Springer, Berlin (1980)

  27. Feigenbaum, J., Grosse, E., Reeds, J.A.: Cryptographic protection of membership lists 9(1), 16–20 (1992). ftp://cm.bell-labs.com/cm/cs/doc/91/4-12.ps.gz

  28. Feigenbaum, J., Liberman, M.Y., Wright, R.N.: Cryptographic protection of databases and software. In: Distributed Computing and Cryptography, pp. 161–172. American Mathematical Society, Providence (1991)

  29. Fiorini C., Martinelli E., Massacci F.: How to fake an RSA signature by encoding modular root finding as a SAT problem. Discrete Appl. Math. 130(2), 101–127 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Gallaire H., Minker J., Nicolas J.: Logic and databases: a deductive approach. Comput. Surv. 16(2), 154–185 (1984)

    Article  MathSciNet  Google Scholar 

  31. Goldreich O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  32. Goldwasser, S.: Multi party computations: past and present. In: Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 1–6. ACM Press, New York (1997). doi:10.1145/259380.259405

  33. Goldwasser S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2):270–299 (1984). See also preliminary version in 14th STOC, 1982

  34. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions. In: Proceedings of the twenty-first annual ACM symposium on Theory of computing, pp. 12–24. ACM Press, New York (1989). doi:10.1145/73007.73009

  35. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as subset sum. In: IEEE (ed.) 30th annual Symposium on Foundations of Computer Science, October 30–November 1, 1989, Research Triangle Park, NC, pp. 236–241. IEEE Computer Society Press, USA (1989)

  36. Jia, H., Moore, C., Strain, D.: Generating hard satisfiable formulas by hiding solutions deceptively. In: AAAI (2005)

  37. Karnaugh, M.: The map method for synthesis of combinational logic circuits. Trans. AIEE, pp. 593–598 (1953)

  38. Kearns, M., Mansour, Y., Ron, D., Rubinfeld, R., Schapire, R.E., Sellie, L.: On the learnability of discrete distributions. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of computing, pp. 273–282. ACM Press, New York (1994). doi:10.1145/195058.195155

  39. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Advances in Cryptology—Eurocrypt ’2004 Proceedings. LNCS, vol. 3027, pp. 1–19. Springer, Berlin (2004)

  40. de Mare, M., Secure, R.W.: Set membership using 3sat. In: Proceedings of the Eighth International Conference on Information and Communication Security (ICICS ’06) (2006)

  41. Matloff, N.S.: Inference control via query restriction vs. data modification: a perspective. In: On Database Security: Status and Prospects, pp. 159–166. North-Holland Publishing Co., Amsterdam (1988)

  42. McCluskey, E.: Minimization of boolean functions. Bell System Technical Journal, pp. 1417–1444 (1956)

  43. Merkle R.C., Hellman M.E.: Hiding information and signatures in trapdoor knapsacks. IEEE Trans. Inf. Theory 24(5), 525–530 (1978)

    Article  Google Scholar 

  44. Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: Proceedings of the FOCS 2003, p. 80 (2003)

  45. Mitchell, D., Selman, B., Levesque, H.: Problem solving: hardness and easiness—hard and easy distributions of SAT problems. In: Proceeding of the 10th National Conference on Artificial Intelligence (AAAI-92), San Jose, California, pp. 459–465. AAAI Press, Menlo Park (1992)

  46. Morselli, R., Bhattacharjee, S., Katz, J., Keleher, P.: Trust preserving set operations. Tech. rep.

  47. Naor, M.: Evaluation may be easier than generation (extended abstract). In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of computing, pp. 74–83. ACM Press, New York (1996). doi:10.1145/237814.237833

  48. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, Seattle, Washington, May 15–17, 1989, pp. 33–43. ACM Press, New York (1989)

  49. Odlyzko, A.M.: The rise and fall of knapsack cryptosystems. In: Pomerance, C., Goldwasser, S., (eds.) Cryptology and Computational Number Theory. Proceedings of Symposia in Applied Mathematics. AMS short course lecture notes, vol. 42, pp. 75–88. pub-AMS (1990)

  50. Ostrovsky, R., Rackoff, C., Smith, A.: Efficient consistency proofs for generalized queries on a committed database. In: ICALP: Annual International Colloquium on Automata, Languages and Programming, pp. 1041–1053 (2004)

  51. Quine, W.V.: A way to simplify truth functions. American Mathematical Monthly, pp. 627–631 (1955)

  52. Reed M.G., Syverson P.F., Goldschlag D.M.: Anonymous connections and onion routing. IEEE J. Selected Areas Commun. 16(4), 482–494 (1998)

    Article  Google Scholar 

  53. Schneier B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C. John Wiley and Sons, Inc., New York (1994)

    Google Scholar 

  54. Tendick P., Matloff N.: A modified random perturbation method for database security. ACM Trans. Database Syst. 19(1), 47–63 (1994). doi:10.1145/174638.174641

    Article  Google Scholar 

  55. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to association rule mining. J. Comput. Security (2004, to appear)

  56. Wayner P.: Translucent Databases. Flyzone Press, Baltimore (2002)

    Google Scholar 

  57. Yao, A.: Protocols for secure computations. In: IEEE (ed.) 23rd annual Symposium on Foundations of Computer Science, November 3–5, 1982, Chicago, IL, pp. 160–164. IEEE Computer Society Press, USA (1982)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Esponda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esponda, F., Forrest, S. & Helman, P. Negative representations of information. Int. J. Inf. Secur. 8, 331–345 (2009). https://doi.org/10.1007/s10207-009-0078-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10207-009-0078-1

Keywords

Navigation