Skip to main content
Log in

Locally-coherent multi-population mortality modelling via neural networks

  • Published:
Decisions in Economics and Finance Aims and scope Submit manuscript

Abstract

This manuscript proposes an approach for large-scale mortality modelling and forecasting with the assumption of locally-coherence of the mortality forecasts. In general, the coherence prevents diverging long-term mortality forecasts between two or more populations. Despite being considered a desirable property in a multi-population modelling framework, it could be perceived as a strong assumption when a large collection of countries is considered. We propose a neural network model which requires the coherence of the mortality forecasts only within sub-groups of similar populations. The architecture is designed to be easily interpretable and induces the creation of some clusters of countries with similar mortality patterns. This aspect also makes the model an interesting tool for analysing similarities and differences between different countries’ mortality dynamics and identifying opportunities for longevity risk diversification and mitigation. An extensive set of numerical experiments performed using all the available data from the Human Mortality Database shows that our model produces more accurate mortality forecasts with respect to some well-known stochastic mortality models. Furthermore, a massive reduction of the parameters to optimise is achieved with respect to the benchmark mortality models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atance, D., Balbás, A., Navarro, E.: Constructing dynamic life tables with a single-factor model. Decis. Econ. Finan. 43(2), 787–825 (2020)

    Article  Google Scholar 

  • Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

    Google Scholar 

  • Boonen, T.J., Li, H.: Modeling and forecasting mortality with economic growth: a multipopulation approach. Demography 54(5), 1921–1946 (2017)

    Article  Google Scholar 

  • Booth, H., Tickle, L.: Mortality modelling and forecasting: a review of methods. Ann. Actuarial Sci. 3(1–2), 3–43 (2008)

    Article  Google Scholar 

  • Bozzo, G., Levantesi, S., Menzietti, M.: Longevity risk and economic growth in sub-populations: evidence from Italy. Decis. Econ. Finan. 44(1), 101–115 (2021)

    Article  Google Scholar 

  • Brouhns, N., Denuit, M., Vermunt, J.K.: A poisson log-bilinear regression approach to the construction of projected lifetables. Insurance Math. Econom. 31(3), 373–393 (2002)

    Article  Google Scholar 

  • Cairns, A.J., Blake, D., Dowd, K.: A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration. J. Risk Insurance 73(4), 687–718 (2006)

    Article  Google Scholar 

  • Dong, Y., Huang, F., Yu, H., Haberman, S.: Multi-population mortality forecasting using tensor decomposition. Scand. Actuar. J. 2020(8), 754–775 (2020)

    Article  Google Scholar 

  • Enchev, V., Kleinow, T., Cairns, A.J.: Multi-population mortality models: fitting, forecasting and comparisons. Scand. Actuar. J. 2017(4), 319–342 (2017)

    Article  Google Scholar 

  • Giordano, G., Haberman, S., Russolillo, M.: Coherent modeling of mortality patterns for age-specific subgroups. Decis. Econ. Finan. 42(1), 189–204 (2019)

    Article  Google Scholar 

  • Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, (2016)

  • Guibert, Q., Loisel, S., Lopez, O., Piette, P.: Bridging the li-carter’s gap: a locally coherent mortality forecast approach (2020)

  • Guo, C., Berkhahn, F.: Entity embeddings of categorical variables. Preprint arXiv:1604.06737 (2016)

  • Hainaut, D.: A neural-network analyzer for mortality forecast. ASTIN Bull. J. IAA 48(2), 481–508 (2018)

    Article  Google Scholar 

  • Hitaj, A., Mercuri, L., Rroji, E.: Lévy carma models for shocks in mortality. Decis. Econ. Finan. 42(1), 205–227 (2019)

    Article  Google Scholar 

  • Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  • Hyndman, R.J., Booth, H., Yasmeen, F.: Coherent mortality forecasting: the product-ratio method with functional time series models. Demography 50(1), 261–283 (2013)

    Article  Google Scholar 

  • Kleinow, T.: A common age effect model for the mortality of multiple populations. Insurance Math. Econom. 63, 147–152 (2015)

    Article  Google Scholar 

  • Lee, R.D., Carter, L.R.: Modeling and forecasting us mortality. J. Am. Stat. Assoc. 87(419), 659–671 (1992)

    Google Scholar 

  • Levantesi, S., Nigri, A., Piscopo, G.: Clustering-based simultaneous forecasting of life expectancy time series through long-short term memory neural networks. Int. J. Approx. Reason. 140, 282–297 (2022)

    Article  Google Scholar 

  • Li, N., Lee, R.: Coherent mortality forecasts for a group of populations: an extension of the lee-carter method. Demography 42(3), 575–594 (2005)

    Article  Google Scholar 

  • Lindholm, M., Palmborg, L.: Efficient use of data for lstm mortality forecasting. Eur. Actuar. J. 1–30 (2022)

  • Marino, M., Levantesi, S., Nigri, A.: A neural approach to improve the lee-carter mortality density forecasts. North Am. Actuar. J. 1–18 (2022)

  • Nigri, A., Levantesi, S., Marino, M., Scognamiglio, S., Perla, F.: A deep learning integrated lee-carter model. Risks 7(1), 33 (2019)

    Article  Google Scholar 

  • Perla, F., Richman, R., Scognamiglio, S., Wüthrich, M.V.: Time-series forecasting of mortality rates using deep learning. Scand. Actuar. J. 1–27 (2021)

  • Renshaw, A.E., Haberman, S.: Lee-carter mortality forecasting with age-specific enhancement. Insurance Math. Econom. 33(2), 255–272 (2003)

    Article  Google Scholar 

  • Renshaw, A.E., Haberman, S.: A cohort-based extension to the lee-carter model for mortality reduction factors. Insurance Math. Econom. 38(3), 556–570 (2006)

    Article  Google Scholar 

  • Richman, R.: Ai in actuarial science-a review of recent advances-part 1. Ann. Actuar. Sci. 15(2), 207–229 (2021)

    Article  Google Scholar 

  • Richman, R.: Ai in actuarial science-a review of recent advances-part 2. Ann. Actuar. Sci. 15(2), 230–258 (2021)

    Article  Google Scholar 

  • Richman, R., Wüthrich, M.V.: A neural network extension of the lee-carter model to multiple populations. Ann. Actuar. Sci. 15(2), 346–366 (2021)

    Article  Google Scholar 

  • Russolillo, M., Giordano, G., Haberman, S.: Extending the lee-carter model: a three-way decomposition. Scand. Actuar. J. 2011(2), 96–117 (2011)

    Article  Google Scholar 

  • Schnürch, S., Korn, R.: Point and interval forecasts of death rates using neural networks. ASTIN Bull. J. IAA 52(1), 333–360 (2022)

    Article  Google Scholar 

  • Schnürch, S., Kleinow, T., Korn, R.: Clustering-based extensions of the common age effect multi-population mortality model. Risks 9(3), 45 (2021)

    Article  Google Scholar 

  • Scognamiglio, S.: A multi-population locally-coherent mortality model. In: Mathematical and Statistical Methods for Actuarial Science and Finance, pp. 423–428 (2022). Springer

  • Scognamiglio, S.: Calibrating the lee-carter and the poisson lee-carter models via neural networks. ASTIN Bull. J. IAA 1–43 (2022)

  • Shang, H.L., Haberman, S.: Forecasting multiple functional time series in a group structure: an application to mortality. ASTIN Bull. J. IAA 50(2), 357–379 (2020)

    Article  Google Scholar 

  • Wilmoth, J.R., Shkolnikov, V.: Human mortality database. University of California, Berkeley (US), and Max Planck Institute for Demographic Research (Germany) (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Scognamiglio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perla, F., Scognamiglio, S. Locally-coherent multi-population mortality modelling via neural networks. Decisions Econ Finan 46, 157–176 (2023). https://doi.org/10.1007/s10203-022-00382-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10203-022-00382-x

Keywords

JEL classification:

Navigation