Skip to main content
Log in

Optimality and duality in nonsmooth semi-infinite optimization, using a weak constraint qualification

  • Published:
Decisions in Economics and Finance Aims and scope Submit manuscript

Abstract

Variational analysis, a subject that has been vigorously developing for the past 40 years, has proven itself to be extremely effective at describing nonsmooth phenomenon. The Clarke subdifferential (or generalized gradient) and the limiting subdifferential of a function are the earliest and most widely used constructions of the subject. A key distinction between these two notions is that, in contrast to the limiting subdifferential, the Clarke subdifferential is always convex. From a computational point of view, convexity of the Clarke subdifferential is a great virtue. We consider a nonsmooth multiobjective semi-infinite programming problem with a feasible set defined by inequality constraints. First, we introduce the weak Slater constraint qualification and derive the Karush–Kuhn–Tucker types necessary and sufficient conditions for (weakly, properly) efficient solution of the considered problem. Then, we introduce two duals of Mond–Weir type for the problem and present (weak and strong) duality results for them. All results are given in terms of Clarke subdifferential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antczak, T.: Lipschitz \(r -\)Invex functions and nonsmooth programming. Numer. Func. Anal. Optim. 23, 265–283 (2002)

    Article  Google Scholar 

  • Antczak, T.: Generalized \(B-(\rho , r)-\)Invexity functions and nonlinear mathematical programming. Numer. Func. Anal. Optim. 30, 1–22 (2009a)

  • Antczak, T.: On \(G-\)invex multiobjective programming, part I. Optim. J. Global Optim. 43, 111–140 (2009b)

  • Antczak, T.: Saddle point criteria and Wolfe duality in nonsmooth \((\Phi ,\rho )-\)invex vector optimization problems with inequality and equality constraints. Int. J. Comput. Math. 92, 882–907 (2015)

    Article  Google Scholar 

  • Antczak, T., Stasiak, A.: \((\Phi ,\rho )-\)Invexity in nonsmooth optimization. Numer. Func. Anal. Optim. 32, 1–25 (2011)

    Article  Google Scholar 

  • Antczak, T.: Proper efficiency conditions and duality results for nonsmooth vector optimization in Banach spaces under \((\Phi ,\rho )-\)invexity. Nonlinear Anal. 75, 3107–3121 (2012)

    Article  Google Scholar 

  • Ben-Israel, A., Mond, B.: What is invexity? J. Aust. Math. Sci. 28, 1–9 (1986)

    Article  Google Scholar 

  • Brandao, A.J.V., Rojas-Medar, M.A., Silva, G.N.: Invex nonsmooth alternative theorem and applications. Optimization 48, 239–253 (2000)

    Article  Google Scholar 

  • Cambini, A., Martein, L.: Generalized Convexity and Optimization. Berlin, Springer (2009)

  • Caristi, G., Ferrara, M., Stefanescu, A.: Semi-infinite multiobjective programming with generalized invexity. Math. Rep. 62, 217–233 (2010)

    Google Scholar 

  • Caristi, G., Ferrara, M., and Stefanescu, A.: Mathematical programming with \((\rho ,\Phi )\)-invexity. In Generalized Convexity and Related Topics. Lecture Notes in Economics and Mathematical Systems, Vol. 583. (I.V. Konnor, D.T. Luc, and A.M. Rubinov, eds.). Springer, Berlin-Heidelberg-New York, 167-176 (2006)

  • Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, Interscience (1983)

  • Craven, B.D.: Invex functions and constrained local minima. Bull. Aust. Math. Soc. 24, 357–366 (1981)

    Article  Google Scholar 

  • Craven, B.D.: Nondifferentiable optimization by nonsmooth approximations. Optimization 17, 3–17 (1986)

    Article  Google Scholar 

  • Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)

  • Gao, X.Y.: Necessary optimality and duality for multiobjective semi-infinite programming. J. theor. Appl. Inf. Technol. 46, 347–353 (2012)

    Google Scholar 

  • Gao, X.Y.: Optimality and duality for non-smooth multiobjective semi-infinite programming. J. Netw. 8, 413–420 (2013)

    Google Scholar 

  • Goberna, M.A., Kanzi, N.: Optimality conditions in convex multiobjective SIP. Math. Programm. (2017). https://doi.org/10.1007/s10107-016-1081-8

    Article  Google Scholar 

  • Guerra-Vazquez, F., Todorov, M.I.: Constraint qualifications in linear vector semi-infinite optimization. Eur. J. Oper. Res. 227, 32–40 (2016)

    Google Scholar 

  • Goberna, M.A., Guerra-Vazquez, F., Todorov, M.I.: Constraint qualifications in convex vector semi-infinite optimization. Eur. J. Oper. Res. 249, 12–21 (2013)

    Article  Google Scholar 

  • Gopfert, A., Riahi, H., Tammer, C., Zalinescu, C.: Variational methods in partial ordered spaces. Springer, New York (2003)

    Google Scholar 

  • Guerraggio, A., Molho, E., Zaffaroni, A.: On the notion of proper efficiency in vector optimization. J. Optim. Theory Appl. 82, 1–21 (1994)

    Article  Google Scholar 

  • Hanson, M.A., Mond, B.: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545–550 (1981)

    Article  Google Scholar 

  • Hanson, M.A.: Invexity and Kuhn-Tucker theorem. J. Math. Anal. Appl. 236, 594–604 (1999)

    Article  Google Scholar 

  • Hettich, R., Kortanek, O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35, 380–429 (1993)

    Article  Google Scholar 

  • Hiriart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms. I & II. Springer, Berlin, Heidelberg (1991)

  • Horst, R., Thoai, N.V.: DC programming: overview. J. Optim. Theory Appl. 103, 1–43 (1999)

    Article  Google Scholar 

  • Kanzi, N., Shaker Ardekani, J., Caristi, G.: Optimality, scalarization and duality in linear vector semi-infinite programming. Optimization 67, 523–536 (2018)

    Article  Google Scholar 

  • Kanzi, N.: Necessary and sufficient conditions for (weakly) efficient of nondifferentiable multi-objective semi-infinite programming. Iran. J. Sci. Technol. Trans. A: Sci. 42, 1537–1544 (2017)

    Article  Google Scholar 

  • Kanzi, N.: Necessary optimality conditions for nonsmooth semi-infinite programming problems. J. Glob. Optim. 49, 713–725 (2011)

    Article  Google Scholar 

  • Kanzi, N.: Constraint qualifications in semi-infinite systems and their applications in nonsmooth semi-infinite problems with mixed constraints. SIAM J. Optim. 24, 559–572 (2014)

    Article  Google Scholar 

  • Kanzi, N.: On strong KKT optimality conditions for multiobjective semi-infinite programming problems with Lipschitzian data. Optim. Lett. 9, 1121–1129 (2015)

    Article  Google Scholar 

  • Kanzi, N., Nobakhtian, S.: Optimality conditions for nonsmooth semi-infinite multiobjective programming. Optim. Lett. 8, 1515–1528 (2013)

    Google Scholar 

  • López, M.A., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180, 491–518 (2007)

    Article  Google Scholar 

  • López, M.A., Vercher, E.: Optimality conditions for nondifferentiable convex semi-infinite Programming. Math. Program. 27, 307–319 (1983)

    Article  Google Scholar 

  • Mond, B., Weir, T.: Generalized concavity and duality. In, Schaible, S., Ziemba, W.T. (eds). Generallized concavity in Optimization and Economics. pp. 263–279. Academic Press, New York (1981)

  • Penot, J.P.: What is quasiconcex analysis? Optimization 47, 35–110 (2000)

    Article  Google Scholar 

  • Penot, J.P.: Are generalized derivatives useful for generalized convex functions?. in Generalized Convexity, Generalized Monotonicity: Recent Results, J.-P. Crouzeix, J. E. Martinez-Legaz, and M. Volle, (eds.), Kluwer, Dordrecht. 3-59 (1998)

  • Phuong, T.D., Sach, P.H., Yen, N.D.: Strict lower semicountinuty of the level sets and invexity of locally lipschitiz function. J. Optim. Theory. Appl. 87, 579–594 (1995)

    Article  Google Scholar 

  • Reiland, T.W.: Nonsmooth invexity. Bull. Aust. Math. Soc. 42, 437–446 (1990)

    Article  Google Scholar 

  • Rubinov, A.M.: Abstract Convexity and Global Optimization. Boston, Kluwer Academic Publishers (2000)

  • Vial, J.P.: Strong and weak convexity of sets and functions. Math. Oper. Res. 8, 231–259 (1983)

    Article  Google Scholar 

  • Zalinescu, C.: A critical view on invexity. J. Optim. Theory Appl. 162, 695–704 (2014)

    Article  Google Scholar 

Download references

Funding

Not Applicable

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Giuseppe Caristi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barilla, D., Caristi, G. & Kanzi, N. Optimality and duality in nonsmooth semi-infinite optimization, using a weak constraint qualification. Decisions Econ Finan 45, 503–519 (2022). https://doi.org/10.1007/s10203-022-00375-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10203-022-00375-w

Keywords

JEL Classification

Navigation