Skip to main content

Advertisement

Log in

Long versus short time scales: the rough dilemma and beyond

  • Published:
Decisions in Economics and Finance Aims and scope Submit manuscript

Abstract

Using a large dataset on major FX rates, we test the robustness of the rough fractional volatility model over different time scales, by including smoothing and measurement errors into the analysis. Our findings lead to new stylized facts in the log–log plots of the second moments of realized variance increments against lag which exhibit some convexity in addition to the roughness and stationarity of the volatility. The very low perceived Hurst exponents at small scales are consistent with the rough framework, while the higher perceived Hurst exponents for larger scales lead to a nonlinear behaviour of the log–log plot that has not been described by models introduced so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. A fractional Brownian motion (fBm) \(B_H\) of Hurst exponent \(H\in (0,1)\) is a Gaussian process with a non-trivial covariance function, namely a non-Markovian process that allows for long or short memory, according to resp. \(H>0.5\) or \(H<0.5\). The case \(H=0.5\) corresponds to the classic (Markovian) Brownian motion.

  2. http://realized.oxford-man.ox.ac.uk/data/download. The Oxford-Man Institute’s Realized Library contains a selection of daily nonparametric estimates of volatility of financial assets, including realized variance and realized kernel estimates.

  3. See, for example, the papers on the website https://sites.google.com/site/roughvol/home.

  4. In reality, we are using a version of \(M_{k,\tau ,N}(X)\) with overlapping increments. This allows us to slightly increase the convergence of this empirical absolute moment Lo and MacKinlay (1988).

  5. Note that here we assume an additive model for the variance, not for the volatility. We can justify this choice by the additive nature of the variance, which makes it possible to apply the central limit theorem and to get an asymptotic distribution of the measurement error (Rootzen 1980; Jacod and Protter 1998; Barndorff-Nielsen and Shephard 2002).

  6. We thus take into account the fact that the H perceived at large scales is less affected by noise than the H at small scales.

References

  • Alòs, E., León, J.A., Vives, J.: On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stochast. 11(4), 571–589 (2007)

    Article  Google Scholar 

  • Andersen, T.G., Bollerslev, T.: Intraday periodicity and volatility persistence in financial markets. J. Empir. Financ. 4(2), 115–158 (1997)

    Article  Google Scholar 

  • Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P.: The distribution of realized exchange rate volatility. J. Am. Stat. Assoc. 96, 42–55 (2003)

    Article  Google Scholar 

  • Baillie, R.T.: Long memory processes and fractional integration in econometrics. J. Econom. 73(1), 5–59 (1996)

    Article  Google Scholar 

  • Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63(2), 167–241 (2001)

    Article  Google Scholar 

  • Barndorff-Nielsen, O.E., Shephard, N.: Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 64(2), 253–280 (2002)

    Article  Google Scholar 

  • Benassi, A., Cohen, S., Istas, J.: Identifying the multifractional function of a Gaussian process. Stat. Probab. Lett. 39(4), 337–345 (1998)

    Article  Google Scholar 

  • Bennedsen, M., Lunde, A., Pakkanen, M.S.: Decoupling the short- and long-term behavior of stochastic volatility. arXiv:1610.00332 (2016)

  • Bollerslev, T., Mikkelsen, H.O.: Modeling and pricing long memory in stock market volatility. J. Econom. 73(1), 151–184 (1996)

    Article  Google Scholar 

  • Breidt, F.J., Crato, N., De Lima, P.: The detection and estimation of long memory in stochastic volatility. J. Econom. 83(1–2), 325–348 (1998)

    Article  Google Scholar 

  • Bubák, V., Kočenda, E., Žikeš, F.: Volatility transmission in emerging European foreign exchange markets. J. Bank. Finance 35(11), 2829–2841 (2011)

    Article  Google Scholar 

  • Cheridito, P., Kawaguchi, H., Maejima, M.: Fractional Ornstein–Uhlenbeck processes. Electron. J. Probab. 8(3), 1–14 (2003)

    Google Scholar 

  • Coeurjolly, J.-F.: Identification of multifractional Brownian motion. Bernoulli 11(6), 987–1008 (2005)

    Article  Google Scholar 

  • Comte, F., Renault, E.: Long memory in continuous-time stochastic volatility models. Math. Financ. 8(4), 291–323 (1998)

    Article  Google Scholar 

  • Cuchiero, C., Teichmann, J.: Fourier transform methods for pathwise covariance estimation in the presence of jumps. Stoch. Process. Their Appl. 125(1), 116–160 (2015)

    Article  Google Scholar 

  • Ding, Z., Granger, C.W., Engle, R.F.: A long memory property of stock market returns and a new model. J. Empir. Financ. 1(1), 83–106 (1993)

    Article  Google Scholar 

  • Duffie, D., Filipovic, D., Schachermayer, W.: Affine processes and applications in finance. Ann. Appl. Probab. 13(3), 984–1053 (2003)

    Article  Google Scholar 

  • Dupire, B.: Pricing with a smile. Risk 7, 18–20 (1994)

    Google Scholar 

  • Fukasawa, M., Takabatake, T., Westphal, R.: Is volatility rough? arXiv:1905.04852 (2019)

  • Garcin, M.: Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates. Physica A 483, 462–479 (2017)

    Article  Google Scholar 

  • Garcin, M.: Hurst exponents and delampertized fractional Brownian motions. Int. J. Theor. Appl. Finance 22(5), 1950024 (2019)

    Article  Google Scholar 

  • Garcin, M., Goulet, C.: Non-parametric news impact curve: a variational approach. Soft. Comput. 24(18), 13797–13812 (2019)

    Article  Google Scholar 

  • Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Finance 18(6), 933–949 (2018)

    Article  Google Scholar 

  • Geweke, J., Porter-Hudak, S.: The estimation and application of long memory time series models. J. Time Ser. Anal. 4(4), 221–238 (1983)

    Article  Google Scholar 

  • Hagan, P.S., Kumar, D., Lesniewski, A., Woodward, D.E.: Managing smile risk. Wilmott Mag. 1, 84–108 (2002)

    Google Scholar 

  • Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)

    Article  Google Scholar 

  • Jacod, J., Protter, P.: Asymptotic error distributions for the Euler method for stochastic differential equations. Ann. Probab. 26(1), 267–307 (1998)

    Article  Google Scholar 

  • Kolmogorov, A.: The Wiener spiral and some other interesting curves in Hilbert space. Doklady Akad. Nauk SSSR 26(2), 115–118 (1940)

    Google Scholar 

  • Kuck, K., Maderitsch, R.: Intra-day dynamics of exchange rates: new evidence from quantile regression. Q. Rev. Econ. Finance 71, 247–257 (2019)

    Article  Google Scholar 

  • Lallouache, M., Abergel, F.: Empirical properties of the foreign exchange interdealer market. arXiv:1307.5440 (2013)

  • Lo, A.W.: Long-term memory in stock market prices. Econometrica 59(5), 1279–1313 (1991)

    Article  Google Scholar 

  • Lo, A.W., MacKinlay, A.C.: Stock market prices do not follow random walks: evidence from a simple specification test. Rev. Financ. Stud. 1(1), 41–66 (1988)

    Article  Google Scholar 

  • Mandelbrot, B., van Ness, J.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    Article  Google Scholar 

  • Parkinson, M.: The extreme value method for estimating the variance of the rate of return. J. Bus. 53(1), 61–65 (1980)

    Article  Google Scholar 

  • Robert, C.Y., Rosenbaum, M.: A new approach for the dynamics of ultra-high-frequency data: the model with uncertainty zones. J. Financ. Econom. 9(2), 344–366 (2011a)

    Google Scholar 

  • Robert, C.Y., Rosenbaum, M.: Volatility and covariation estimation when microstructure noise and trading times are endogenous. Math. Financ. 22(1), 133–164 (2011b)

    Article  Google Scholar 

  • Rogers, L.C.G.: Things we think we know. https://www.skokholm.co.uk/lcgr/downloadable-papers/ (2019)

  • Rootzen, H.: Limit distributions for the error in approximations of stochastic integrals. Ann. Probab. 8(2), 241–251 (1980)

    Article  Google Scholar 

  • Stein, E., Stein, J.: Stock price distributions with stochastic volatility: an analytic approach. Rev. Financ. Stud. 4(4), 727–752 (1994)

    Article  Google Scholar 

  • Šapina, M., Garcin, M., Kramarić, K., Milas, K., Brdarić, D., Pirić, M.: The Hurst exponent of heart rate variability in neonatal stress, based on a mean-reverting fractional Lévy stable motion. Fluct. Noise Lett. 19(3), 2050026 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Elisa Alòs, Fabienne Comte, Christa Cuchiero, Eva Flonner, Gilles Pagès, Andrea Pallavicini, and Mathieu Rosenbaum for useful comments on a preliminary version. We also thank the participants of the 2019 Quantitative Methods in Finance conference, Sydney, for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martino Grasselli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcin, M., Grasselli, M. Long versus short time scales: the rough dilemma and beyond. Decisions Econ Finan 45, 257–278 (2022). https://doi.org/10.1007/s10203-021-00358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10203-021-00358-3

Keywords

Mathematics Subject Classification

Navigation