Skip to main content
Log in

Competition and cooperation in the exploitation of the groundwater resource

  • Published:
Decisions in Economics and Finance Aims and scope Submit manuscript

Abstract

We study the exploitation of a common groundwater resource, first as a static and then as a differential game, in order to take into account the strategic and dynamic interactions among the users of the resource. We suppose that firms can form coalitions or can decide not to cooperate. The non-cooperation regime is characterized by pumping that lead to depletion of the aquifer; the cooperation preserves the resource. Open-loop and feedback equilibria have been computed and compared in order to characterize the existence of cooperators and defectors in water resources management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown, G.: Renewable natural resource management and use without markets. J. Econ. Lit. 38(4), 875–914 (2000)

    Article  Google Scholar 

  • Burke, J.: Groundwater for irrigation: productivity gains and the need to manage hydro-environmental risk. In: Llamas, M.R., Custodio, E. (eds.) Intensive Use of Groundwater: Challenges and Opportunities, Chapter 3, pp. 59–80. Taylor and Francis, London (2003)

    Google Scholar 

  • Esteban, E., Albiac, J.: Groundwater and ecosystems damages: questioning the Gisser–Sanchez effect. Ecol. Econ. 70, 2062–2069 (2011)

    Article  Google Scholar 

  • Gisser, M., Sanchez, D.: Competition versus optimal control in groundwater pumping. Water Resour. Res. 16, 638–642 (1980)

    Article  Google Scholar 

  • Jaroslav, V., Annukka, L.: Groundwater resources sustainability indicators. IHP-VI Series on Groundwater 14 (2007)

  • Koundouri, P.: Current issues in the economics of groundwater resource management. J. Econ. Surv. 18(5), 703–740 (2004)

    Article  Google Scholar 

  • Koundouri, P., Xepapadeas, A.: Estimating accounting price for common pool natural resources: a distance function approach. Water Resour. Res. 40(6), S617 (2004)

    Google Scholar 

  • Negri, D.: The common property aquifer as a differential game. Water Resour. Res. 25, 9–15 (1989)

    Article  Google Scholar 

  • Provencher, B., Burt, O.: The externalities associated with the common property exploitation of groundwater. J. Environ. Econ. Manag. 24, 139–158 (1993)

    Article  Google Scholar 

  • Rubio, S.J., Casino, B.: Competitive versus efficient extraction of a common property resource. The groundwater case. J. Econ. Dyn. Control 25, 1117–11137 (2001)

    Article  Google Scholar 

  • Rubio, S.J., Casino, B.: Strategic behavior and efficiency in the common property extraction of groundwater. Environ. Resour. Econ. 26, 73–87 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Biancardi.

Appendix

Appendix

Proof of Proposition 2

In order to solve the problem proposed, we use the maximum principle. Let us define the current value of the Hamiltonian \(\mathcal {H}\) in the standard way.

$$\begin{aligned} \mathcal {H} _i= & {} \displaystyle \sum _{i=1}^{m}\left\{ \displaystyle \frac{N}{2k}{w_i}^2-\displaystyle \frac{g}{k} w_i-(c_0+c_1H)w_i-\beta \left[ -(\alpha -1)w_i-\frac{R}{N} \right] \right\} \\&+\,\displaystyle \frac{\lambda _i}{ AS }\left[ R+(\alpha -1)\displaystyle \sum _{i=1}^{m}w_i+(\alpha -1)\displaystyle \sum _{j=m+1}^{N}w_j\right] \quad i=1,\ldots ,m\\ \mathcal {H}_j= & {} \displaystyle \frac{N}{2k}{w_j}^2-\displaystyle \frac{g}{k} w_j-(c_0+c_1H)w_j-\beta \left[ -(\alpha -1)w_j-\frac{R}{N} \right] \\&+\,\displaystyle \frac{\lambda _j}{ AS }\left[ R+(\alpha -1)\displaystyle \sum _{i=1}^{m}w_i+(\alpha -1)\displaystyle \sum _{j=m+1}^{N}w_j\right] \quad j=m+1,\ldots ,N \end{aligned}$$

where \(\lambda _i\) and \(\lambda _j\) are the adjoint variables. We obtain the following set of necessary conditions for an interior open-loop equilibrium:

$$\begin{aligned} \displaystyle \frac{\partial \mathcal {H}_i}{\partial w_i}= & {} 0\Longleftrightarrow \displaystyle \frac{N}{k}{w_i}-\displaystyle \frac{g}{k} -c_0-c_1H+\beta (\alpha -1)+\displaystyle \frac{\lambda _i}{ AS }(\alpha -1)=0 \quad i=1,\ldots ,m\\ \displaystyle \frac{\partial \mathcal {H}_j}{\partial w_j}= & {} 0\Longleftrightarrow \displaystyle \frac{N}{k}{w_j}-\displaystyle \frac{g}{k} -c_0-c_1H+\beta (\alpha -1)+\displaystyle \frac{\lambda _j}{ AS }(\alpha -1)=0 \\&\qquad j=m+1,\ldots ,N \end{aligned}$$

which give us:

$$\begin{aligned} w_i= & {} \displaystyle \frac{k}{N} \left[ \displaystyle \frac{g}{k}+c_0+c_1H-\beta (\alpha -1)- \displaystyle \frac{\lambda _i}{ AS }(\alpha -1) \right] \quad i=1,\ldots ,m \end{aligned}$$
(28)
$$\begin{aligned} w_j= & {} \displaystyle \frac{k}{N} \left[ \displaystyle \frac{g}{k}+c_0+c_1H-\beta (\alpha -1)- \displaystyle \frac{\lambda _j}{ AS }(\alpha -1) \right] \quad j=m+1,\ldots ,N\nonumber \\ \end{aligned}$$
(29)

The adjoint equations are:

$$\begin{aligned} \dot{\lambda _i}= & {} r\lambda _i+c_1mw_i \quad i=1,\ldots ,m\\ \dot{\lambda _j}= & {} r\lambda _j+c_1w_j \quad j=m+1,\ldots ,N \end{aligned}$$

and the transversality conditions being:

$$\begin{aligned}&\lim _{t\longrightarrow +\infty }e^{-rt} \lambda _i(t)\ge 0 \quad \lim _{t\longrightarrow +\infty }e^{-rt} \lambda _i(t)H(t)= 0 \quad i=1,\ldots ,m\\&\lim _{t\longrightarrow +\infty }e^{-rt} \lambda _j(t)\ge 0 \quad \lim _{t\longrightarrow +\infty }e^{-rt} \lambda _j(t)H(t)= 0 \quad j=m+1,\ldots ,N \end{aligned}$$

Taking into account that, at the steady state, \(\dot{H}=\dot{\lambda } =0\), the first-order conditions and the adjoint equations are used to determine the stationary equilibrium

$$\begin{aligned} \dot{\lambda _i}&=0\Longleftrightarrow \lambda _i=-c_1 m[g+k(c_0+c_1H-\beta (\alpha -1))]\left[ \displaystyle \frac{ AS }{{ rASN }-(\alpha -1)c_1mk}\right] \\ i&=1,\ldots ,m \\ \dot{\lambda _j}&=0\Longleftrightarrow \lambda _j=-c_1 [g+k(c_0+c_1H-\beta (\alpha -1))]\left[ \displaystyle \frac{ AS }{{ rASN }-(\alpha -1)c_1k}\right] \\ j&=m+1,\ldots ,N \end{aligned}$$

and moreover

$$\begin{aligned} \dot{\lambda _i}=0\Longleftrightarrow w_i=-\displaystyle \frac{r\lambda _i}{mc_1} \quad \text{ and } \quad \dot{\lambda _j}=0\Longleftrightarrow w_j=-\displaystyle \frac{r\lambda _j}{c_1} \end{aligned}$$

From differential equation, we have

$$\begin{aligned} \dot{H}=0\Longleftrightarrow R+m(\alpha -1)w_i+(N-m)(\alpha -1)w_j=0 \end{aligned}$$

By substitution of \(\lambda _i\) and \(\lambda _j\), we obtain the steady-state value of water table

$$\begin{aligned} H^*=-\displaystyle \frac{R}{rc_1k(\alpha -1)[m\mu +(N-m)\xi ]}-\displaystyle \frac{1}{c_1}\left[ \displaystyle \frac{g}{k}+c_0-\beta (\alpha -1)\right] \end{aligned}$$

where

$$\begin{aligned} \mu = \left[ \displaystyle \frac{ AS }{{ rASN }-(\alpha -1)c_1mk}\right] \quad \text{ and } \quad \xi =\left[ \displaystyle \frac{ AS }{{ rASN }-(\alpha -1)c_1k}\right] \end{aligned}$$

and so

$$\begin{aligned} \lambda _i^*= & {} \displaystyle \frac{\mu c_1mR}{r(\alpha -1)[m\mu +(N-m)\xi ]}\\ \lambda _j^*= & {} \displaystyle \frac{\xi c_1R}{r(\alpha -1)[m\mu +(N-m)\xi ]} \end{aligned}$$

and

$$\begin{aligned} w _i^*= & {} -\displaystyle \frac{\mu R}{(\alpha -1)[m\mu +(N-m)\xi ]}\\ w _j^*= & {} -\displaystyle \frac{\xi R}{(\alpha -1)[m\mu +(N-m)\xi ]} \end{aligned}$$

\(\square \)

Proof of Proposition 3

We have

$$\begin{aligned} \displaystyle \frac{\partial H^*}{\partial m}= & {} \displaystyle \frac{R[c_1k(\alpha -1)-{ NrAS }][m^2c_1k(\alpha -1)-{ NrAS }(2m-1)]}{rAS[c_1km(m-N-1)(\alpha -1)+N^2rAS]^2}>0 \\ \displaystyle \frac{\partial H^*_{PO}}{\partial m}= & {} \displaystyle \frac{R}{{ rNAS }}>0 \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biancardi, M., Maddalena, L. Competition and cooperation in the exploitation of the groundwater resource. Decisions Econ Finan 41, 219–237 (2018). https://doi.org/10.1007/s10203-018-0217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10203-018-0217-0

Keywords

JEL Classification

Navigation