Abstract
A Nash–Cournot model for oligopolistic markets with concave cost functions and a differentiated commodity is analyzed. Equilibrium states are characterized through Ky Fan inequalities. Relying on the minimization of a suitable merit function, a general algorithmic scheme for solving them is provided. Two concrete algorithms are therefore designed that converge under suitable convexity and monotonicity assumptions. The results of some numerical tests on randomly generated markets are also reported.
Similar content being viewed by others
References
Bigi, G., Castellani, M., Pappalardo, M.: A new solution method for equilibrium problems. Optim. Methods Softw. 24(6), 895–911 (2009)
Bigi, G., Castellani, M., Pappalardo, M., Passacantando, M.: Existence and solution methods for equilibria. Eur. J. Oper. Res. 227(1), 1–11 (2013)
Bigi, G., Passacantando, M.: D-gap functions and descent techniques for solving equilibrium problems. J. Glob. Optim. 62(1), 183–203 (2015a)
Bigi, G., Passacantando, M.: Twelve monotonicity conditions arising from algorithms for equilibrium problems. Optim. Methods Softw. 30(2), 323–337 (2015b)
Bigi, G., Passacantando, M.: Auxiliary problem principles for equilibria. Optimization 10(1080/02331934), 1227808 (2016)
Bonanno, G.: General equilibrium theory with imperfect competition. J. Econ. Surv. 4(4), 297–328 (1990)
Castellani, M., Giuli, M.: On equivalent equilibrium problems. J. Optim. Theory Appl. 147(1), 157–168 (2010)
Charitha, C.: A note on D-gap functions for equilibrium problems. Optimization 62(2), 211–226 (2013)
Danskin, J.M.: The theory of max–min, with applications. SIAM J. Appl. Math. 14(1), 641–664 (1966)
Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, 1st edn. Springer, New York (2003)
Flåm, S.D., Ben-Israel, A.: A continuous approach to oligopolistic market equilibrium. Oper. Res. 38(6), 1045–1051 (1990)
Friedman, J.: Oligopoly and the Theory of Games. Advanced Textbooks in Economics. North-Holland Pub. Co., Amsterdam (1977)
Fudenberg, D., Tirole, J.: Dynamic Models of Oligopoly. Harwood Academic Publishers, Amsterdam (1986)
Harker, P.T.: A variational inequality approach for the determination of oligopolistic market equilibrium. Math. Program. 30(1), 105–111 (1984)
Hiriart-Urruty, J.B., Lemaréchal, C.: Convex analysis and minimization algorithms. I., Fundamentals. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1993)
Kolstad, C.D., Mathiesen, L.: Computing Cournot–Nash equilibria. Oper. Res. 39(5), 739–748 (1991)
Konnov, I.: Application of the proximal point method to nonmonotone equilibrium problems. J. Optim. Theory Appl. 119(2), 317–333 (2003)
Konnov, I.V., Pinyagina, O.V.: D-gap functions for a class of equilibrium problems in Banach spaces. Comput. Methods Appl. Math. 3(2), 274–286 (2003)
Krawczyk, J.B., Uryasev, S.: Relaxation algorithms to find Nash equilibria with economic applications. Environ. Model. Assess. 5(1), 63–73 (2000)
Marcotte, P.: Algorithms for the network oligopoly problem. J. Oper. Res. Soc. 38(11), 1051–1065 (1987)
Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996)
Murphy, F.H., Sherali, H.D., Soyster, A.L.: A mathematical programming approach for determining oligopolistic market equilibrium. Math. Program. 24(1), 92–106 (1982)
Muu, L.D., Nguyen, V.H., Quy, N.V.: On Nash–Cournot oligopolistic market equilibrium models with concave cost functions. J. Glob. Optim. 41(3), 351–364 (2008)
Nagurney, A.: Algorithms for oligopolistic market equilibrium problems. Reg. Sci. Urban Econ. 18(3), 425–445 (1988)
Okuguchi, K., Szidarovszky, F.: The Theory of Oligopoly with Multi-Product Firms. Lecture Notes in Economics and Mathematical Systems, vol. 342. Springer, Berlin (1990)
Pappalardo, M., Mastroeni, G., Passacantando, M.: Merit functions: a bridge between optimization and equilibria. Ann. Oper. Res. 240(1), 271–299 (2016)
Salant, S.W.: Imperfect competition in the international energy market: a computerized Nash–Cournot model. Oper. Res. 30(2), 252–280 (1982)
Singh, N., Vives, X.: Price and quantity competition in a differentiated duopoly. RAND J. Econ. 15(4), 546–554 (1984)
Vial, J.P.: Strong and weak convexity of sets and functions. Math. Oper. Res. 8(2), 231–259 (1983)
Vives, X.: Cournot and the oligopoly problem. Eur. Econ. Rev. 33(2–3), 503–514 (1989)
von Mouche, P., Quartieri, F.: (eds) Equilibrium Theory for Cournot Oligopolies and Related Games. Springer Series in Game Theory, Springer, [Cham], essays in honour of Koji Okuguchi (2016)
Zhang, L.P., Han, J.Y.: Unconstrained optimization reformulations of equilibrium problems. Acta Math. Sin. (Engl Ser) 25(3), 343–354 (2009)
Acknowledgements
We would like to thank Marco Castellani and Massimiliano Giuli for providing background material for the proof of Theorem 4(a). The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA - National Group for Mathematical Analysis, Probability and their Applications) of the Istituto Nazionale di Alta Matematica (INdAM - National Institute of Higher Mathematics).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bigi, G., Passacantando, M. Differentiated oligopolistic markets with concave cost functions via Ky Fan inequalities. Decisions Econ Finan 40, 63–79 (2017). https://doi.org/10.1007/s10203-017-0187-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10203-017-0187-7