Skip to main content
Log in

Differentiated oligopolistic markets with concave cost functions via Ky Fan inequalities

  • Published:
Decisions in Economics and Finance Aims and scope Submit manuscript

Abstract

A Nash–Cournot model for oligopolistic markets with concave cost functions and a differentiated commodity is analyzed. Equilibrium states are characterized through Ky Fan inequalities. Relying on the minimization of a suitable merit function, a general algorithmic scheme for solving them is provided. Two concrete algorithms are therefore designed that converge under suitable convexity and monotonicity assumptions. The results of some numerical tests on randomly generated markets are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bigi, G., Castellani, M., Pappalardo, M.: A new solution method for equilibrium problems. Optim. Methods Softw. 24(6), 895–911 (2009)

    Article  Google Scholar 

  • Bigi, G., Castellani, M., Pappalardo, M., Passacantando, M.: Existence and solution methods for equilibria. Eur. J. Oper. Res. 227(1), 1–11 (2013)

    Article  Google Scholar 

  • Bigi, G., Passacantando, M.: D-gap functions and descent techniques for solving equilibrium problems. J. Glob. Optim. 62(1), 183–203 (2015a)

    Article  Google Scholar 

  • Bigi, G., Passacantando, M.: Twelve monotonicity conditions arising from algorithms for equilibrium problems. Optim. Methods Softw. 30(2), 323–337 (2015b)

    Article  Google Scholar 

  • Bigi, G., Passacantando, M.: Auxiliary problem principles for equilibria. Optimization 10(1080/02331934), 1227808 (2016)

    Google Scholar 

  • Bonanno, G.: General equilibrium theory with imperfect competition. J. Econ. Surv. 4(4), 297–328 (1990)

    Article  Google Scholar 

  • Castellani, M., Giuli, M.: On equivalent equilibrium problems. J. Optim. Theory Appl. 147(1), 157–168 (2010)

    Article  Google Scholar 

  • Charitha, C.: A note on D-gap functions for equilibrium problems. Optimization 62(2), 211–226 (2013)

    Article  Google Scholar 

  • Danskin, J.M.: The theory of max–min, with applications. SIAM J. Appl. Math. 14(1), 641–664 (1966)

    Article  Google Scholar 

  • Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, 1st edn. Springer, New York (2003)

    Google Scholar 

  • Flåm, S.D., Ben-Israel, A.: A continuous approach to oligopolistic market equilibrium. Oper. Res. 38(6), 1045–1051 (1990)

    Article  Google Scholar 

  • Friedman, J.: Oligopoly and the Theory of Games. Advanced Textbooks in Economics. North-Holland Pub. Co., Amsterdam (1977)

    Google Scholar 

  • Fudenberg, D., Tirole, J.: Dynamic Models of Oligopoly. Harwood Academic Publishers, Amsterdam (1986)

    Google Scholar 

  • Harker, P.T.: A variational inequality approach for the determination of oligopolistic market equilibrium. Math. Program. 30(1), 105–111 (1984)

    Article  Google Scholar 

  • Hiriart-Urruty, J.B., Lemaréchal, C.: Convex analysis and minimization algorithms. I., Fundamentals. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1993)

    Book  Google Scholar 

  • Kolstad, C.D., Mathiesen, L.: Computing Cournot–Nash equilibria. Oper. Res. 39(5), 739–748 (1991)

    Article  Google Scholar 

  • Konnov, I.: Application of the proximal point method to nonmonotone equilibrium problems. J. Optim. Theory Appl. 119(2), 317–333 (2003)

    Article  Google Scholar 

  • Konnov, I.V., Pinyagina, O.V.: D-gap functions for a class of equilibrium problems in Banach spaces. Comput. Methods Appl. Math. 3(2), 274–286 (2003)

    Article  Google Scholar 

  • Krawczyk, J.B., Uryasev, S.: Relaxation algorithms to find Nash equilibria with economic applications. Environ. Model. Assess. 5(1), 63–73 (2000)

    Article  Google Scholar 

  • Marcotte, P.: Algorithms for the network oligopoly problem. J. Oper. Res. Soc. 38(11), 1051–1065 (1987)

    Article  Google Scholar 

  • Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996)

    Article  Google Scholar 

  • Murphy, F.H., Sherali, H.D., Soyster, A.L.: A mathematical programming approach for determining oligopolistic market equilibrium. Math. Program. 24(1), 92–106 (1982)

    Article  Google Scholar 

  • Muu, L.D., Nguyen, V.H., Quy, N.V.: On Nash–Cournot oligopolistic market equilibrium models with concave cost functions. J. Glob. Optim. 41(3), 351–364 (2008)

    Article  Google Scholar 

  • Nagurney, A.: Algorithms for oligopolistic market equilibrium problems. Reg. Sci. Urban Econ. 18(3), 425–445 (1988)

    Article  Google Scholar 

  • Okuguchi, K., Szidarovszky, F.: The Theory of Oligopoly with Multi-Product Firms. Lecture Notes in Economics and Mathematical Systems, vol. 342. Springer, Berlin (1990)

  • Pappalardo, M., Mastroeni, G., Passacantando, M.: Merit functions: a bridge between optimization and equilibria. Ann. Oper. Res. 240(1), 271–299 (2016)

    Article  Google Scholar 

  • Salant, S.W.: Imperfect competition in the international energy market: a computerized Nash–Cournot model. Oper. Res. 30(2), 252–280 (1982)

    Article  Google Scholar 

  • Singh, N., Vives, X.: Price and quantity competition in a differentiated duopoly. RAND J. Econ. 15(4), 546–554 (1984)

    Article  Google Scholar 

  • Vial, J.P.: Strong and weak convexity of sets and functions. Math. Oper. Res. 8(2), 231–259 (1983)

    Article  Google Scholar 

  • Vives, X.: Cournot and the oligopoly problem. Eur. Econ. Rev. 33(2–3), 503–514 (1989)

    Article  Google Scholar 

  • von Mouche, P., Quartieri, F.: (eds) Equilibrium Theory for Cournot Oligopolies and Related Games. Springer Series in Game Theory, Springer, [Cham], essays in honour of Koji Okuguchi (2016)

  • Zhang, L.P., Han, J.Y.: Unconstrained optimization reformulations of equilibrium problems. Acta Math. Sin. (Engl Ser) 25(3), 343–354 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Marco Castellani and Massimiliano Giuli for providing background material for the proof of Theorem 4(a). The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA - National Group for Mathematical Analysis, Probability and their Applications) of the Istituto Nazionale di Alta Matematica (INdAM - National Institute of Higher Mathematics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Bigi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bigi, G., Passacantando, M. Differentiated oligopolistic markets with concave cost functions via Ky Fan inequalities. Decisions Econ Finan 40, 63–79 (2017). https://doi.org/10.1007/s10203-017-0187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10203-017-0187-7

Keywords

Navigation