Decisions in Economics and Finance

, Volume 39, Issue 2, pp 143–174 | Cite as

Diversification preferences in the theory of choice

  • Enrico G. De GiorgiEmail author
  • Ola Mahmoud


Diversification represents the idea of choosing variety over uniformity. Within the theory of choice, desirability of diversification is axiomatized as preference for a convex combination of choices that are equivalently ranked. This corresponds to the notion of risk aversion when one assumes the von Neumann–Morgenstern expected utility model, but the equivalence fails to hold in other models. This paper analyzes axiomatizations of the concept of diversification and their relationship to the related notions of risk aversion and convex preferences within different choice theoretic models. Implications of these notions on portfolio choice are discussed. We cover model-independent diversification preferences, preferences within models of choice under risk, including expected utility theory and the more general rank-dependent expected utility theory, as well as models of choice under uncertainty axiomatized via Choquet expected utility theory. Remarks on interpretations of diversification preferences within models of behavioral choice are given in the conclusion.


Diversification Risk aversion Convex preferences Portfolio choice 

JEL Classification

D81 G11 


  1. Acerbi, C., Tasche, D.: Expected shortfall: a natural coherent alternative to value at risk. Econ. Notes 31(2), 379–388 (2002a)CrossRefGoogle Scholar
  2. Acerbi, C., Tasche, D.: On the coherence of expected shortfall. J. Bank. Finance 26(7), 1487–1503 (2002b)CrossRefGoogle Scholar
  3. Allais, M.: The General Theory of Random Choices in Relation to the Invariant Cardinal Utility Function and the Specific Probability Function: The \((U, q)\) Model—A General Overview. CNRS, Paris (1987)Google Scholar
  4. Anscombe, F., Aumann, R.: A definition of subjective probability. Ann. Math. Stat. 34, 199–205 (1963)CrossRefGoogle Scholar
  5. Arrow, K.J.: The theory of risk aversion. In: Saatio, Y.J. (ed.) Aspects of the Theory of Risk Bearing. Markham Publ. Co., Chicago (1965)Google Scholar
  6. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9(3), 203–228 (1999)CrossRefGoogle Scholar
  7. Bernard, C., He, X., Yan, J.-A., Zhou, X.Y.: Optimal insurance design under rank-dependent expected utility. Math. Finance 25(1), 154–186 (2013)CrossRefGoogle Scholar
  8. Bernoulli, D.: Exposition of a new theory on the measurement of risk. Econometrica 22, 23–26 (1738)CrossRefGoogle Scholar
  9. Boyle, P., Garlappi, L., Uppal, R., Wang, T.: Keynes meets Markowitz: the trade-off between familiarity and diversification. Manag. Sci. 58(2), 253–272 (2012)CrossRefGoogle Scholar
  10. Campanale, C.: Learning, ambiguity and life-cycle portfolio allocation. Rev. Econ. Dyn. 14, 339–367 (2011)CrossRefGoogle Scholar
  11. Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Montrucchio, L.: Risk measures: rationality and diversification. Math. Finance 21(4), 743–774 (2011a)Google Scholar
  12. Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Montrucchio, L.: Uncertainty averse preferences. J. Econ. Theory 146, 1275–1330 (2011b)CrossRefGoogle Scholar
  13. Chateauneuf, A., Cohen, M.: Risk seeking with diminishing marginal utility in a non-expected utility model. J. Risk Uncertain. 9, 77–91 (1994)CrossRefGoogle Scholar
  14. Chateauneuf, A., Lakhnati, G.: From sure to strong diversification. Econ. Theory 32, 511–522 (2007)CrossRefGoogle Scholar
  15. Chateauneuf, A., Tallon, J.-M.: Diversification, convex preferences and non-empty core in the choquet expected utility model. Econ. Theory 19, 509–523 (2002)CrossRefGoogle Scholar
  16. Chen, H., Ju, N., Miao, J.: Dynamic asset allocation with ambiguous return predictability. Rev. Econ. Stud. 17(4), 799–823 (2014)Google Scholar
  17. Chew, S.H., Karni, E., Safra, Z.: Risk aversion in the theory of expected utility with rank dependent probabilities. J. Econ. Theory 42, 370–381 (1987)CrossRefGoogle Scholar
  18. Chew, S.H., Mao, M.H.: A Schur concave characterization of risk aversion for non-expected utility preferences. J. Econ. Theory 67, 402–435 (1995)CrossRefGoogle Scholar
  19. Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1954)CrossRefGoogle Scholar
  20. Cohen, M.D.: Risk-aversion concepts in expected- and non-expected-utility models. Geneva Pap. Risk Insur. Theory 20, 73–91 (1995)CrossRefGoogle Scholar
  21. De Giorgi, E., Epper, T., Mahmoud, O.: A behavioral analysis of diversification. Working Paper, University of St. Gallen (2016)Google Scholar
  22. Debreu, G.: Continuity properties of Paretian utility. Int. Econ. Rev. 5, 285–293 (1964)CrossRefGoogle Scholar
  23. Dekel, E.: Asset demands without the independence axiom. Econometrica 57, 163–169 (1989)CrossRefGoogle Scholar
  24. Dimmock, S. G., Kouwenberg, R., Mitchell, O.S., Peijnenburg, K.: Ambiguity aversion and household portfolio choice. NBER Working Paper No. 18743 (2014)Google Scholar
  25. Dow, J., da Costa Werlang, S.R.: Uncertainty aversion, risk aversion, and the optimal choice of portfolio. Econometrica 60(1), 197–204 (1992)CrossRefGoogle Scholar
  26. Drapeau, S., Kupper, M.: Risk preferences and their robust representation. Math. Oper. Res. 38(1), 28–62 (2013)CrossRefGoogle Scholar
  27. Ellsberg, D.: Risk, ambiguity and savage axioms. Q. J. Econ. 75, 643–679 (1961)CrossRefGoogle Scholar
  28. Epstein, L.G.: A definition of uncertainty aversion. Rev. Econ. Stud. 66(3), 579–608 (1999)CrossRefGoogle Scholar
  29. Föllmer, H., Schied, A.: Coherent and convex risk measures. In: Cont, R. (ed.) Encyclopedia of Quantitative Finance, pp. 355–363. Wiley, New York (2010)Google Scholar
  30. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time. Walter de Gruyter, Berlin (2011)CrossRefGoogle Scholar
  31. Garlappi, L., Uppal, R., Wang, T.: Portfolio selection with parameter and model uncertainty: a multi-prior approach. Rev. Financ. Stud. 20, 41–81 (2007)CrossRefGoogle Scholar
  32. Ghirardato, P., Marinacci, M.: Ambiguity made precise: a comparative foundation. J. Econ. Theory 102, 251–289 (2002)CrossRefGoogle Scholar
  33. Gilboa, I.: Expected utility with purely subjective non-additive probabilities. J. Math. Econ. 16, 65–88 (1987)CrossRefGoogle Scholar
  34. Hadar, J., Russell, W.R.: Rules for ordering uncertain prospects. Am. Econ. Rev. 59, 25–34 (1969)Google Scholar
  35. Hastie, R., Dawes, R.M.: Rational Choice in an Uncertain World: The Psychology of Judgement and Decision Making. SAGE Publishing Inc., Beverly Hills (2009)Google Scholar
  36. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979)CrossRefGoogle Scholar
  37. Kahneman, D., Tversky, A.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5, 297–323 (1992)CrossRefGoogle Scholar
  38. Keynes, J.M.: A Treatise on Probability. Macmillan & Co, London (1921)Google Scholar
  39. Keynes, J.M.: The Collected Writings of John Maynard Keynes. Cambridge University Press, Cambridge (1983)CrossRefGoogle Scholar
  40. Knight, F.: Risk, Uncertainty and Profit. Houghton Miffin, Boston (1921)Google Scholar
  41. Landsberger, M., Meilijson, I.: Mean-preserving portfolio dominance. Rev. Econ. Stud. 60, 479–485 (1993)CrossRefGoogle Scholar
  42. Lintner, J.: The valuation of risky assets and the selection of risky investments in stock portfolios and capital budgets. Rev. Econ. Stat. 47(1), 13–37 (1965)CrossRefGoogle Scholar
  43. Liu, H.: Robust consumption and portfolio choice for time varying investment opportunities. Ann. Finance 6, 435–454 (2010)CrossRefGoogle Scholar
  44. Machina, M.J.: A stronger characterization of declining risk aversion. Econometrica 50, 1069–1079 (1982)CrossRefGoogle Scholar
  45. Machina, M.J.: The Economic Theory of Individual Behavior Toward Risk. Cambridge University Press, First published in 1983 as Paper No. 433, Center for Research on Organizational Efficiency, Stanford University (2008)Google Scholar
  46. Machina, M.J., Siniscalchi, M.: Ambiguity and ambiguity aversion. In: Machina, M.J., Viscusi, K. (eds.) Handbook of the Economics of Risk and Uncertainty, Chap. 13, vol. 1, pp. 729–807. Elsevier, Amsterdam (2014)Google Scholar
  47. Maenhout, P.: Robust portfolio rules and asset pricing. Rev. Financ. Stud. 17, 951–983 (2004)CrossRefGoogle Scholar
  48. Machina, M.J., Siniscalchi, M.: Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium. J. Econ. Theory 128, 136–163 (2006)CrossRefGoogle Scholar
  49. Markowitz, H.M.: Portfolio selection. J. Finance 7, 77–91 (1952)Google Scholar
  50. Mossin, J.: Equilibrium in a capital asset market. Econometrica 34(4), 768–783 (1966)CrossRefGoogle Scholar
  51. Pratt, J.W.: Risk aversion in the small and in the large. Econometrica 32, 122–136 (1964)CrossRefGoogle Scholar
  52. Quiggin, J.: A theory of anticipated utility. J. Econ. Behav. Organ. 3, 323–343 (1982)CrossRefGoogle Scholar
  53. Quiggin, J.: Comparative statics for rank-dependent expected utility theory. J. Risk Uncertain. 4, 339–350 (1991)CrossRefGoogle Scholar
  54. Quiggin, J.: Increasing risk: another definition. In: Chikan, A. (ed.) Progress in Decision, Utility and Risk Theory. Kluwer, Dordrecht (1992)Google Scholar
  55. Quiggin, J.: Generalized expected utility theory: the rank-dependent model. Kluwer Academic Publishers, Dordrecht (1993)CrossRefGoogle Scholar
  56. Ramsey, F.J.: Truth and probability. In: Braithwaite, R.B. (ed.) The Foundations of Mathematics and Other Logical Essays. Kegan Paul, London (1926)Google Scholar
  57. Röell, A.: Risk aversion in Quiggin and Yaari’s rank-order model of choice under uncertainty. Econ. J. 97, 143–159 (1987)CrossRefGoogle Scholar
  58. Ross, S.A.: Some stronger measures of risk aversion in the small and in the large. Econometrica 49(3), 621–638 (1981)CrossRefGoogle Scholar
  59. Rothchild, M., Stiglitz, J.E.: Increasing risk: I. A definition. J. Econ. Theory 2, 225–243 (1970)CrossRefGoogle Scholar
  60. Savage, L.J.: The Foundations of Statistics. Wiley, New York (1954)Google Scholar
  61. Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 5, 571–587 (1989)CrossRefGoogle Scholar
  62. Segal, U.: Anticipated utility: a measure representation approach. Ann. Oper. Res. 19, 359–374 (1989)CrossRefGoogle Scholar
  63. Sharpe, W.F.: Capital asset prices: a theory of market equilibrium under conditions of risk. J. Finance 19(3), 425–442 (1964)Google Scholar
  64. Stanovich, K.E.: Decision Making and Rationality in the Modern World. Oxford University Press, Oxford (2009)Google Scholar
  65. Uppal, R., Wang, T.: Model misspecification and underdiversification. J. Finance 58, 2465–2486 (2003)CrossRefGoogle Scholar
  66. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)Google Scholar
  67. Wakker, P.: Characterizing optimism and pessimism directly through comonotonicity. J. Econ. Theory 52, 453–463 (1990)CrossRefGoogle Scholar
  68. Yaari, M.E.: The dual theory of choice under risk. Econometrica 55, 95–115 (1987)CrossRefGoogle Scholar
  69. Zhang, J.: Subjective ambiguity, expected utility and choquet expected utility. Econ. Theory 20(1), 159–181 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2016

Authors and Affiliations

  1. 1.Department of Economics, School of Economics and Political ScienceUniversity of St. GallenSt. GallenSwitzerland
  2. 2.Faculty of Mathematics and Statistics, School of Economics and Political ScienceUniversity of St. GallenSt. GallenSwitzerland
  3. 3.Center for Risk Management ResearchUniversity of CaliforniaBerkeleyUSA

Personalised recommendations