Towards a prospective technology assessment: challenges and requirements for technology assessment in the age of technoscience

Abstract

The objective of this paper is to contribute to the expanding discourse on conceptual elements of TA. As a point of departure, it takes the recent transformation of the science, technology and innovation system (“technoscience”). We will show that the age of technoscience can be regarded as presenting not only a challenge, but also a chance and opportunity for TA. Embracing this opportunity, however, implies imposing several requirements on TA. In order to specify these requirements and to foster the ongoing discourse on the foundations of TA, this paper suggests a programmatic term: prospective technology assessment (ProTA). This term is intended mainly as a reflection framework, aimed at providing an extension and complement—and not a replacement—of well-established TA concepts. Three requirements for ProTA are sketched: (1) early stage orientation—the temporal dimension, (2) intention and potential orientation—the knowledge dimension, (3) shaping orientation—the power/actor dimension. Examples from fusion and nano research will illustrate the need for ProTA, as well as its specific focus. The paper concedes that ProTA is in its infancy and that there is a clear need for further clarification.

Zusammenfassung

Dieser Aufsatz möchte einen programmatischen Beitrag zur Theorie-Diskussion der TA leisten. Als deskriptive Basis für eine effektive TA erscheint hierfür die Berücksichtigung der derzeitigen Veränderung des Wissenschafts-, Technologie- und Innovationssystems („technoscience”) notwendig. Die Technoscience kann eher als eine Chance für TA denn als ein Problem verstanden werden. Allerdings sieht sich TA einigen Anforderungen ausgesetzt, welchen einen Entwicklungsbedarf signalisieren. Die Anforderungen werden spezifiziert und exemplifiziert. Der Aufsatz entwickelt in einem dritten Schritt einen programmatischen Begriff: Prospektive TA (ProTA). Dieser wird nicht als Ersatz, sondern als spezifische Ergänzung und Erweiterung bestehender TA-Konzepte verstanden. Zentrale Elemente sind: 1. Frühzeitigkeits-Orientierung (zeitliche Dimension), 2. Intentions- und Potenzial-Orientierung (Wissensdimension) sowie 3. Gestaltungs-Orientierung (Macht- und Akteursdimension). Einige Beispiele (Fusions- und Nanoforschung) illustrieren schließlich die Notwenigkeit und den Fokus von ProTA. Eine weitere Klärung von ProTA ist zukünftig notwendig.

Résumé

L’objectif de ce document est de contribuer au discours croissant des éléments conceptuels de l’évalation des choix technologiques (TA). Le point de départ de ce document concerne la récente transformation du système de la science, de la technologie et de l’innovation (« technoscience »). Nous allons montrer que l’âge de la technoscience peut être considéré non seulement comme un défi, mais aussi comme une chance et une opportunité pour la TA. Saisir cette chance implique cependant de confronter la TA à certains pré requis. Afin de spécifier ces pré requis et d’appuyer le discours continuel sur la fondation de la TA ce document suggère un terme programmable, c’est-à-dire destiné principalement à un cadre de réflexion visant à fournir une extension et un complément—et non un remplacement—aux concepts de la TA bien établis: Analyse Prospective de la Technologie (APT). Ce document présente l’ébauche de trois concepts de la TA: 1. orientation initiale et dimension temporelle, 2. intention et orientation potentielle ainsi que la dimension de la connaissance, 3. une orientation du point de vue de la conception ainsi que la dimension du pouvoir et des acteurs. Des exemples (fusion et nano-recherche) vont illustrer le besoin de et la focalisation du APT. Ce document reconnait que l’APT est encore à un stade préliminaire et une clarification de l’APT sera nécessaire.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    Similar concepts have previously been developed, such as science assessment (Böschen and Wehling 2004; Gill 1994; Liebert 1994), vision assessment (Grin and Grunwald 2000; Schmid et al. 2006) and anticipatory governance (Guston and Sarewitz 2006; Barben et al. 2008). This paper does not intend to compare these concepts explicitly (for an overview of them, see Grunwald 2002). According to Schmid et al. (2006:423) we “are now witnessing a growing use and relevance of … longer-term visions.”

  2. 2.

    It is remarkable that Collingridge’s dilemma does not only serve as an excellent introduction to the history of TA but as a (negative) paradigm that has always provoked new efforts at conceptual and theoretical clarification. ProTA could be regarded as one such effort.

  3. 3.

    The dilemma of control may imply a form of control pessimism, where the development of a technology cannot be intentionally shaped by societal actors; this kind of pessimism might support the position of technological determinism.

  4. 4.

    Liebert/Schmidt, ‘Collingridge’s dilemma and technoscience’ in this volume, referred to hereafter as Liebert/Schmidt, Paper A, this volume.

  5. 5.

    He considers the complex entanglement between experts (scientists and engineers) and decision-makers (politicians, governmental officials, managers) in controlling the R&D process (Collingridge 1980:183 et sqq.).

  6. 6.

    Because science is ubiquitous throughout the innovation process, an early stage orientation is possible at any time. This statement would seem to be paradoxical. However, it highlights that we cannot specify a certain time-point, but have to consider the various time-points of different paths throughout the whole, complex innovation process.

  7. 7.

    Positions such as instrumentalism and positivism have been criticised from various perspectives, such as the rationalist and methodological constructivist, to name a few.

  8. 8.

    Certainly, not all approaches in the philosophy of sciences are questioned: in particular, the tradition of methodological constructivism and also (“new” or old Baconian) experimentalism highlights the relevance of normative foundation of science in general. Moreover, in ethics, this means that concepts that address the intentions and actions themselves are also to be considered.

  9. 9.

    For a clarification of the notion of potentials and societal and ethical ideas to keep the action enabling “option-values”, see Hubig (2006).

  10. 10.

    These details can be opened to discourse, made negotiable and, hence, correctable. Technoscientific projects often raise hopes regarding what can be achieved, but may also involve high risks. Here we have to deal with knowledge in a situation of ignorance. However, the feasibility and conditions of viability can be made verifiable through rational inter-subjective discourse.

  11. 11.

    Collingridge speaks of “falsification”, not rejection. He highlights “factual falsifications” and advocates a certain “logic of monitoring” (Collingridge 1980:166).

  12. 12.

    Collingridge was still convinced that “harmful effects of a technology can be identified only after it has been developed and has diffused” (Collingridge 1980:19/20), and if one strives to identify such effects in the early stages, then this will be “at least not with sufficient confidence to justify the imposition of disruptive controls” (ibid. 16). This statement is only partly true.

  13. 13.

    The future’s present will nevertheless remain vague and open. A prediction is impossible.

  14. 14.

    Thus, key elements are: perceiving and acknowledging the intentions, anticipating the potentials and addressing the science-internal perspective of knowledge production. The intentionality and potentiality of technoscientific R&D requires careful study (Hubig 2006).

  15. 15.

    The externalist perspective is misleading. Only when we consider classic action theory, with its externalist perspective to science and technology (object of control), based on a problematic inside/outside dichotomy of science on the one hand, and society and policy on the other, are we faced with a dilemma. Contrary to the classic assumption of an inside/outside dichotomy, the aspects that are externalised from “science” turn out to be important for describing and explaining the inner-scientific dynamic.

  16. 16.

    Sociologists might regard “science as a social process”. Although this view is—to some extent—convincing, ProTA underlines the (artifactual) materiality of technoscientific objects and procedures (resistance, “Widerständigkeit”).

  17. 17.

    This is in line with the positions of social and methodological constructivists.

  18. 18.

    ProTA does not, however, only aim to address—from a negative perspective—methodological problems of ignorance, uncertainty and risk.

  19. 19.

    The following quotations are translations of the authors from the German original (Jonas 1979).

  20. 20.

    The following quotations are translations of the authors from the German original.

  21. 21.

    A derivation of the three dimensions of ProTA (from Bloch and Jonas to the criteria of sustainability, and from the criteria of sustainability to ProTA) is not discussed and explicated here (cf. Bender et al. 2004). Jonas, for instance, stresses the approach to a problem, and the ways of confronting and framing it. He is explicitly early-stage and intention-oriented. Bloch highlights—in a very positive way—the options for shaping science and technology (shaping orientation), including intentions (towards the concrete utopia of the future).

  22. 22.

    Hackett et al. developed a concept of “research ensemble” using the example of fusion research in order to describe an arrangement of “materials, methods, instruments, established practices … ideas, and enabling theories” which is not only constructed and used by researchers, but also reflects the connection to policymakers and the various influences on the research trajectories (Hackett et al. 2004).

  23. 23.

    Implicitly, this means a huge plant with an electricity output of more than one gigawatt, serving as a base-load power station within a centralised grid. Part of the community is focusing on laser fusion, which is interesting mainly for military purposes.

  24. 24.

    For example: vision assessment, science assessment and anticipatory governance. In particular, Schmid et al. (2006) have proposed methods for an “ethical vision assessment” of nanotechnology (Schmid et al. 2006:423 et seq.).

  25. 25.

    The goal of the Roco/Bainbridge report is to advocate such technologies as enable us to “enhance the human performance”. During the past 60 years, efforts have been made to bring together the various parts of science-based technologies, e.g., earlier attempts of cybernetics in the 1940s, such as general systems theory, information theory, solid-state physics, as well as micro systems technology in the 1970s and 1980s. However, there has been little overall progress until now. Engineering sciences seem to remain in patchwork condition. “The traditional tool kit of engineering methods will be of limited utility in some of the most important areas of technological convergence” (Roco and Bainbridge 2002:11). The goal of the US National Science Foundation is, for example, to overcome the apparent limitations of traditional engineering methods by seeking a common technoscientific fundament that is assumed to underlie all the engineering sciences. Such a fundament should help to transgress the boundaries between the various engineering sciences, and between engineering and natural sciences and, thus, foster inventions and innovations. A “unification of sciences” and a “synergistic combination” of technologies is the global goal. “The phrase ‘convergent technologies’ refers to the synergistic combination of four major ‘NBIC’ (nano-bio-info-cogno) provinces of science and technology, each of which is currently progressing at a rapid rate” (ibid. ix).

  26. 26.

    The expert group of the EC criticises the NSF’s approach and stresses its intention to develop “a specifically European approach to converging technologies”.

  27. 27.

    To realise this, the “CTEKS research programs require and produce new standards for interdisciplinary research for goal setting”. For a clarification of the terms “interdisciplinarity” and “transdisciplinarity”, see Gethmann (2005) and Schmidt (2008a).

  28. 28.

    The EC group offers 16 recommendations, including: “Commission and Member States need to recognize and support the contributions of the social sciences and humanities in relation to CTs, with commitments especially to evolutionary anthropology, the economics of technological research and development, foresight methodologies and philosophy” (ibid. 5).

References

  1. Barben D, Fisher E, Selin C, Guston DH (2008) Anticipatory governance of nanotechnology: foresight, engagement, and integration. In: Hackett EJ, Amsterdamska O, Lynch M, Wajcman J (eds) The handbook of science and technology studies. MIT Press, Cambridge, pp 979–1000

    Google Scholar 

  2. Bender W (1998) Erhaltung und Entfaltung—Leitbilder für Frieden und nachhaltige Entwicklung. In: Scheffran J, Vogt WR (eds) Kampf um die Natur. Primus, Darmstadt, pp 249–266

    Google Scholar 

  3. Bender W, Gassen HG, Platzer K, Sinemus K (2000) Ethische Kriterien im Entscheidungsprozess von Unternehmen. Das Beispiel Biotechnologie. Agenda, Münster

    Google Scholar 

  4. Bender W, Liebert W, Schmidt JC (2004) Prospektive Gestaltung von Wissenschaft und Technik. Thema Forschung Forschungsmagazin der TU Darmstadt 2:14–23

    Google Scholar 

  5. Bloch E (1959) Das Prinzip Hoffnung (Gesamtausgabe Band 5). Suhrkamp, Frankfurt

    Google Scholar 

  6. Böschen S, Wehling P (2004) Wissenschaft zwischen Folgenverantwortung und Nichtwissen. VS, Wiesbaden

    Google Scholar 

  7. Collingridge D (1980) The social control of technology. St Martin, New York

    Google Scholar 

  8. Colombo U et al (1990) Fusion programme evaluation. Commission of the European Communities, Brussels

    Google Scholar 

  9. Fagerberg J, Mowery D, Nelson RR (eds) (2005) The Oxford handbook of innovation. Oxford University Press, Oxford

    Google Scholar 

  10. Gethmann CF (2005) Ist das Wahre das Ganze? Methodologische Probleme Integrierter Forschung. In: Wolter G, Carrier M (eds) Homo sapiens und homo faber. de Gruyter, Berlin, pp 391–404

    Google Scholar 

  11. Gibbons M, Limoges C, Nowotny H, Schwartzman S, Scott P, Trow M (1994) The new production of knowledge. SAGE, London

    Google Scholar 

  12. Gill B (1994) Folgenerkenntnis. Science assessment als Selbstreflexion der Wissenschaft. Soziale Welt 45:430–453

    Google Scholar 

  13. Grin J, Grunwald A (eds) (2000) Vision assessment. Shaping technology in 21st century society. Springer, Berlin

    Google Scholar 

  14. Grunwald A (2002) Technikfolgenabschätzung. Eine Einführung. Sigma, Berlin

    Google Scholar 

  15. Grunwald A (2007) Auf dem Weg zu einer Theorie der Technikfolgenabschätzung: der Einstieg—Einführung in den Schwerpunkt. Technikfolgenabschätzung. Theorie und Praxis 16(1):4–17

    Google Scholar 

  16. Guston DH, Sarewitz D (2006) Shaping the next generation of science and technology policy. University of Wisconsin Press, Wisconsin

    Google Scholar 

  17. Hackett E, Conz D, Parker J, Bashford J, DeLay S (2004) Tokamaks and turbulence: research ensembles, policy, and technoscientific work. Research Policy 33(5):747–767

    Article  Google Scholar 

  18. Harremoes P et al (eds) (2001) Late lessons from early warnings. Precautionary principle 1896–2000 European environment agency. Issue report no. 22, Copenhagen

  19. Holdren J et al (1989) Report of the senior committee on environmental, safety, and economic aspects of magnetic fusion energy (ESECOM). Lawrence Livermore National Laboratory, UCRL-53766

  20. Hubig C (2006) Die Kunst des Möglichen I. Transcript, Bielefeld

    Google Scholar 

  21. Jonas H (1979) Das Prinzip Verantwortung. Suhrkamp, Frankfurt

    Google Scholar 

  22. Küppers G (1979) Fusionsforschung. Zur Zielorientierung im Bereich der Grundlagenforschung. In: Daele vdW, Krohn W, Weingart P (eds) Geplante Forschung—Vergleichende Studien über den Einfluss politischer Programme auf die Wissenschaftsentwicklung. Suhrkamp, Frankfurt, pp 287–326

    Google Scholar 

  23. Latour B (1987) Science in action. Harvard University Press, Cambridge

    Google Scholar 

  24. Liebert W (1994) Ambivalenz und Janusköpfigkeit in der Wissenschaft. Bemerkungen zur Analyse und zu wissenschaftstheoretischen Hintergründen. In: Liebert W, Rilling R, Scheffran J (eds) Die Janusköpfigkeit von Forschung und Technik. BdWi, Marburg, pp 242–258

    Google Scholar 

  25. Liebert W (2002) Vergleich fortgeschrittener Nuklearsysteme zur Energienutzung. Aspekte prospektiver Technikgestaltung. In: Rebhan E (ed) Energiehandbuch. Springer, Berlin, pp 559–592

    Google Scholar 

  26. Liebert W, Schmidt JC (2010) Governance von technoscience durch antizipierende Gestaltung—Zugänge durch ProTA. Paper presented at the bi-annual conference of the network of technology assessment, Vienna, May 2008. (forthcoming)

  27. Liebert W, Schmidt JC, Bender W (2005) Prospektive Gestaltung von Wissenschaft und Technik. Zum Umgang mit Fragilität und Ambivalenz. In: Bora A et al (eds) Technik in einer fragilen Welt. Perspektiven der Technikfolgenabschätzung. Sigma, Berlin, pp 357–369

    Google Scholar 

  28. Maisonnier D et al (2005) A conceptual study of commercial fusion power plants. Final report of the European fusion power plant conceptual study (PPCS). EFDA-RP-RE-5.0

  29. Nordmann A et al (2004) High level expert group “Foresighting the new technology wave”. European Commission, Brussels

    Google Scholar 

  30. Raeder J, Cook I, Morgenstern F, Salpiero E, Bünde R, Ebert E (1995) Safety and environmental assessment of fusion power (SEAFP). Report of the SEAFP project. European Commission, Dir Gen XII, EUROFUBRU XII-217/95, Brussels

  31. Roco MC, Bainbridge W (eds) (2002) Converging technologies for improving human performance. National Science Foundation, Arlington

    Google Scholar 

  32. Schmid G et al (2006) Nanotechnology. Assessment and perspectives. Springer, Berlin

    Google Scholar 

  33. Schmidt JC (2007) Die Aktualität der Ethik von Hans Jonas. Eine Kritik der Kritik des Prinzips Verantwortung. Deutsche Zeitschrift für Philosophie 4:648–673

    Google Scholar 

  34. Schmidt JC (2008a) Towards a philosophy of interdisciplinarity. An attempt to provide a classification and clarification. Poiesis Prax 5:53–69

    Article  Google Scholar 

  35. Schmidt JC (2008b) Tracing interdisciplinarity of converging technologies at the nanoscale. Technology Analysis and Strategic Management (TASM) 20(1):45–64

    Article  Google Scholar 

  36. Schmidt JC, Gehrlein U (2002) Perspektivenwechsel Interdisziplinärer Technikforschung. In: Krebs H et al (eds) Perspektiven Interdisziplinärer Technikforschung. Agenda, Münster, pp 15–39

    Google Scholar 

  37. TAB (2002) Nuclear fusion. Status report. (Translation of German original: Kernfusion. Sachstandsbericht. Büro für Technikfolgenabschätzung beim Deutschen Bundestag (TAB). TAB-Arbeitsbericht Nr. 75)

  38. Weyer J, Kirchner U, Riedl L, Schmidt JFK (1997) Technik, die Gesellschaft schafft. Sigma, Berlin

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Liebert.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liebert, W., Schmidt, J.C. Towards a prospective technology assessment: challenges and requirements for technology assessment in the age of technoscience. Poiesis Prax 7, 99–116 (2010). https://doi.org/10.1007/s10202-010-0079-1

Download citation

Keywords

  • Technology Assessment
  • Fusion Reactor
  • Agenda Setting
  • International Thermonuclear Experimental Reactor
  • Externalist Perspective