Poiesis & Praxis

, Volume 4, Issue 1, pp 19–38 | Cite as

Rebound effects of progress in information technology

  • L.M. HiltyEmail author
  • A. Köhler
  • F. Von Schéele
  • R. Zah
  • T. Ruddy


Information technology (IT) is continuously making astounding progress in technical efficiency. The time, space, material and energy needed to provide a unit of IT service have decreased by three orders of magnitude since the first personal computer (PC) was sold. However, it seems difficult for society to translate IT’s efficiency progress into progress in terms of individual, organizational or socio-economic goals. In particular it seems to be difficult for individuals to work more efficiently, for organizations to be more productive and for the socio-economic system to be more sustainable by using increasingly efficient IT. This article provides empirical evidence and potential explanations for this problem. Many counterproductive effects of IT can be explained economically by rebound effects. Beyond that, we conclude that the technological determinism adopted by decision-makers is the main obstacle in translating IT’s progress into non-technical goals.


Rebound effect IT productivity paradox Human–computer interaction Organizational impacts of IT Environmental impacts of IT Information society Sustainable development 


Die Informationstechnologie macht laufend erstaunliche Fortschritte hinsichtlich technischer Effizienz. Zeit-, Raum-, Material- und Energieaufwand pro Einheit von IT-Dienstleistungen haben sich seit dem Verkauf des ersten PC um drei Größenordnungen verringert. Es scheint jedoch schwierig zu sein, die Entwicklung der IT-Effizienz in Fortschritte hinsichtlich individueller, organisatorischer oder sozioökonomischer Ziele umzumünzen. Insbesondere scheint es dem Einzelnen schwer zu fallen, die zunehmend effiziente IT zu nutzen, um selbst effizienter zu arbeiten; Organisationen scheinen durch effizientere IT nicht produktiver zu werden und sozioökonomische Systeme dem Ziel der Nachhaltigkeit nicht näher zu kommen. Dieser Artikel stellt empirische Ergebnisse und mögliche Erklärungen für dieses Problem zusammen. Viele kontraproduktive Effekte der IT können durch Rebound-Effekte ökonomisch erklärt werden. Darüber hinaus kommen wir zu der Schlussfolgerung, dass es hauptsächlich der technologische Determinismus von Entscheidungsträgern ist, der bisher die Nutzung des informationstechnischen Fortschritts für nicht-technische Ziele behindert.



The empirical study reported in the first section of this paper was funded by an internal research grant of Empa and carried out in cooperation with the Royal Technical University, Stockholm in 2002–2003. The data on e-waste is based on a project funded by the Swiss State Secretariat for Economic Affairs (SECO) in 2003–2005. The estimates on second- and third-order effects of ICT are based on a simulation study funded by the Institute for Prospective Technological Studies (IPTS) of the European Commission in 2003–2004. Some parts of the work were co-funded under the umbrella of the “Sustainability in the Information Society” research program of Empa, funded by the ETH board 2001–2005. The funding institutions do not necessarily share the views and opinions expressed in this article.


  1. Arnfalk P (1999) Information technology in pollution prevention. Teleconferencing and telework used as tools in the reduction of work related travel. Licenciate Dissertation, Internationella Miljöinstitutet vid Lunds UniversitetGoogle Scholar
  2. Attewell P (1993) Why productivity remains a key measure of IT impact. In: Paper presented to the productivity impacts of information technology investments conference, Charleston SC, pp 4–5Google Scholar
  3. Binswanger M (2001) Technological progress and sustainable development: what about the rebound effect? Ecol Econ 36:119–132CrossRefGoogle Scholar
  4. Dreyfus HL (1992) What computers still cannot do. A critique of artificial reasonGoogle Scholar
  5. EITO (2002) European information technology observatory. European economic interest grouping. Frankfurt am MainGoogle Scholar
  6. Erdmann L, Hilty LM, Goodman J, Arnfalk P (2004) The future impact ICT on environmental sustainability. Synthesis report. Institute for prospective technology studies (IPTS), SevillaGoogle Scholar
  7. Empa (2005) The e-waste guide at
  8. Forseback L, Johnston P (2000) Case studies of the information society and sustainable development. European Commision. Scholar
  9. Herman R, Ardeni SA, Ausubel JH (1990) Demateralization. Technol Forecast Soc Change 38:333–347CrossRefGoogle Scholar
  10. Hilty LM, Behrendt S, Binswanger M, Bruinink A, Erdmann L, Froehlich J, Köhler A, Kuster N, Som C, Wuertenberger F (2005a) The precautionary principle in the information society—effects of pervasive computing on health and environment. 2nd revised edn. Swiss Center for Technology Assessment (TA-SWISS), Bern (TA46e/2005) and Scientific technology options assessment at the European Parliament (STOA 125 EN), at
  11. Hilty LM, Köhler A, Von Schéele F, Zah R (2005b) Working slower with more powerful computers. Communications of the ACM (submitted)Google Scholar
  12. Hilty LM, Ruddy TF (2000) Towards a sustainable information society. Informatik/Informatique 4:2–7Google Scholar
  13. Hilty LM, Wäger P, Lehmann M, Hischier R, Ruddy TF, Binswanger M (2004) The future impact of ICT on environmental sustainability. Refinement and quantification. Fourth interim report. Institute for prospective technological studies (IPTS), Sevilla, at, accessed 18.04.2005
  14. Heiskanen E, Halme M, Jalas M, Kärnä A, Lovio R (2001) Dematerialisation: the potential of ICT and services. Ministery of the Environment, HelsinkiGoogle Scholar
  15. Horvath J (2002) Borne by blood: the other—and often bloody—side of the ‘digital revolution’, at, accessed 18.04.2005
  16. Köhler A, Erdmann L (2004) Expected environmental impacts of pervasive computing. Human Ecol Risk Assessment 10:831–852CrossRefGoogle Scholar
  17. Macdonald S (2002) The IT productivity paradox revisited: technological determinism masked by management method? Int J Inf Technol Manag 1:1–29Google Scholar
  18. Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38, at
  19. Oertel B, Wölk M, Hilty LM, Köhler A (2005) Security aspects and prospective applications of RFID systems. Bundesamt für Sicherheit in der Informationstechnik, BonnGoogle Scholar
  20. Puckett J, Smith T (2002) Exporting harm: the high-tech trashing of Asia. The Basel Action Network. Silicon Valley Toxics Coalition, SeattleGoogle Scholar
  21. Ruddy TF (2005) Europe’s global responsibility to govern trade and investment sustainably: climate, capital, CAP and Cotonou. Int J Sustainable Dev 8(1/2):97–112CrossRefGoogle Scholar
  22. Schmidt-Bleek F (1993) Wieviel Umwelt braucht der Mensch? Birkhäuser, BaselGoogle Scholar
  23. Schwarzer S et al (2005) E-waste, the hidden side of IT equipment’s manufacturing and use.
  24. Weizenbaum J (1976) Computer power and human reason. From judgment to computation. W.H. Freeman, San Francisco, CAGoogle Scholar
  25. Weizsäcker Von EU, Lovins AB, Lovins LH (1995) Factor four. Doubling wealth, halving resource use. Earthscan, LondonGoogle Scholar
  26. Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Böni H (2005) Global perspectives on e-waste. Environ Impact Assess Rev 25:436–458CrossRefGoogle Scholar
  27. Williams ED, Ayres RU, Heller M (2002) The 1.7 kg microchip, energy and material use in the production of semiconductor devices. Environ Sci Technol 36:5504–5510CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • L.M. Hilty
    • 1
    Email author
  • A. Köhler
    • 1
  • F. Von Schéele
    • 1
  • R. Zah
    • 1
  • T. Ruddy
    • 1
  1. 1.Technology and Society Laboratory, EmpaLerchenfeldstr 5Switzerland

Personalised recommendations