Skip to main content
Log in

Metabolic balance in the euphotic layer of Lake Sagami, Japan

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

In all ecosystems, metabolism is an essential process that controls the biogeochemical carbon cycle through the fixation and mineralization of organic matter. However, the ecological metabolic balance in the semi-riverine and eutrophic reservoir remains poorly understood. In this study, seasonal variations in gross primary production (GPP), ecosystem respiration (ER), net ecosystem production (NEP = GPP−ER), chlorophyll a (Chl a) concentration, and zooplankton abundance were investigated within the euphotic layer of Lake Sagami from May to December both in 2016 and 2017. The Chl a concentration, GPP, ER, and NEP integrated vertically in the euphotic layer varied in the range of 0.7–92.4 mg m−3, 0.3–221.4, 0.6–59.2, −43.5–202 mmol O2 m−3 d−1, respectively. A significant positive linear relationship was observed between the GPP and NEP. The threshold GPP, where GPP equals ER, was 15.6 mmol O2 m−3 d−1, which is very low compared to the values in other eutrophic lakes. As no significant relationship was found between Chl a concentration, GPP and zooplankton abundance, it is possible that most zooplankton feed on allochthonous organic matter rather than autochthonous organic matter. Furthermore, no significant relationship was observed between the ER and zooplankton abundance, suggesting that the ER represents the activity of heterotrophic communities other than zooplankton. The ER was positively correlated with the water temperature. The variation in ER in Lake Sagami is most likely influenced by water temperature rather than particulate organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  • Alfonso BB, Vitale AJ, Menndez MC, Perillo VL, Piccolo MC, Perillo GME (2015) Estimation of ecosystem metabolism from diel oxygen technique in a shallow lake: La Salada (Argentina). Hydrobiologia 752:223–237

    Article  CAS  Google Scholar 

  • Arii S, Tsuji K, Harada K-I (2020) Trends in the appearance of cyanobacteria and factors influencing the bloom formation of cyanobacteria in two eutrophic reservoirs (Lakes Sagami and Tsukui): 40 years of monitoring (in Japanese). Jpn J Limnol 81:1–17

    Article  CAS  Google Scholar 

  • Bocaniov SA, Smith REH (2009) Plankton metabolic balance at the margins of very large lakes: temporal variability and evidence for dominance of autochthonous processes. Freshw Biol 54:345–362

    Article  CAS  Google Scholar 

  • Brönmark C, Hansson LA (2018) The biology of lakes and ponds, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Carritt DE, Carpenter JH (1966) Comparison and evaluation of currently employed modifications of the Winker method for determining dissolved oxygen in seawater; a NASCO report. J Mar Res 24:286–318

    CAS  Google Scholar 

  • Cole JJ, Pace ML, Carpenter SR, Kitchell JF (2000) Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnol Oceanogr 45:1718–1730

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: Intergrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185

    Article  Google Scholar 

  • del Giorgio PA, Peters RH (1994) Patterns in planktonic PR ratios in lakes. influence of lake trophy and dissolved organic carbon. Limnol Oceanogr 39:772–787

    Article  Google Scholar 

  • del Giorgio PA, Duarte CM (2002) Respiration in the open ocean. Nature 420:379–384

    Article  PubMed  Google Scholar 

  • del Giorgio PA, Cole JJ, Cimbleris A (1997) Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385:148–151

    Article  Google Scholar 

  • Demars BOL, Gíslason GM, Ólafsson JS, Manson JR, Friberg N, Hood JM, Thompson JJ, Freitag TE (2016) Impact of warming on CO2 emission from streams countered by aquatic photosynthesis. Nat Geosci 9:758–761

    Article  CAS  Google Scholar 

  • Duarte CM, Agustí S (1998) The CO2 balance of unproductive aquatic ecosystems. Science 281:234–236

    Article  CAS  PubMed  Google Scholar 

  • Duarte CM, Regaudie-de-Gioux A (2009) Thresholds of gross primary production for the metabolic balance of marine planktonic communities. Limnol Oceanogr 54:1015–1022

    Article  CAS  Google Scholar 

  • Geider RJ (1997) Photosynthesis or planktonic respiration? Nature 132:1038

    Google Scholar 

  • Goldman JC, Carpenter EJ (1974) A kinetic approach to the effect of temperature on algal growth. Limnol Oceanogr 19:756–766

    Article  Google Scholar 

  • Hanazato T (1989) Interrelations between blue-green algae and zooplankton in eutrophic lakes-a review (in Japanese). Jpn J Limnol 50:53–67

    Article  Google Scholar 

  • Hanazato T, Arakawa T, Sakuma M, Chang K-H, Okino T (2001) Zooplankton community in Lake Suwa: Community structure and its role in the ecosystem (in Japanese). Jpn J Limnol 62:151–167

    Article  CAS  Google Scholar 

  • Imamoto H, Tasaku M, Furusato E (2013) The effects of artificial circulation for prevention of cyanobacterial bloom and musty odor caused by cyanobacteria-field experiments in nine dam reservoirs- (in Japanese). JJSDE 23:278–289

    Google Scholar 

  • Ishizaki H (1972) Survey on smelt in Lake Sagami-II (in Japanese). Rep Kanagawa Freshw Fish Prop Exp Sta 9:79–90

    Google Scholar 

  • Japan Meteorological Agency (2023) https://www.data.jma.go.jp/stats/etrn/index.php?prec_no=46&block_no=0387&year=&month=&day=&view=. Accessed 24 Aug 2023

  • Kanagawa (2022) https://www.pref.kanagawa.jp/docs/e4b/env/1804.html. Accessed 24 Aug 2023

  • Kimmel BL, Lind OT, Paulson LJ (1990) Reservoir primary production. In: Thornton KW, Kimmel BL, Payne FE (eds) Reservoir limnology: ecological perspective. John Wiley & Sons, New York, pp 133–193

    Google Scholar 

  • Kimura F, Shiomi Y, Tomioka H, Takahashi S (2015). Development of blue-green algae occurs forecast technology in dam reservoir (in Japanese). Rep Water Resourc Environ Res Inst 3–9

  • Krause-Jensen D, Sand-Jensen K (1998) Light and photosynthesis in aquatic plant communities. Limnol Oceanogr 43:396–407

    Article  CAS  Google Scholar 

  • Laas A, Nõges P, Kõiv T, Nõges T (2012) High-frequency metabolism study in a large and shallow temperate lake reveals seasonal switching between net autotrophy and net heterotrophy. Hydrobiologia 694:57–74

    Article  CAS  Google Scholar 

  • Marzolf GR (1990) Reservoirs as environments for zooplankton. In: Thornton KW, Kimmel BL, Payne FE (eds) Reservoir limnology: ecological perspective. John Wiley & Sons, New York, pp 195–208

    Google Scholar 

  • McKinnon AD, Duggan S, Logan M, Lønborg C (2017) Plankton respiration, production, and trophic state in tropical coastal and shelf waters adjacent to northern Australia. Front Mar Sci 4:346

    Article  Google Scholar 

  • Obrador B, Staehr PA, Christensen JPC (2014) Vertical patterns of metabolism in three contrasting stratified lakes. Limnol Oceanogr 59:1228–1240

    Article  CAS  Google Scholar 

  • Oudot C, Gerard R, Morin P, Gningue I (1988) Precise shipboard determination of dissolved oxygen (Winkler procedure) for productivity studies with a commercial system. Limnol Oceanogr 33:146–150

    Article  CAS  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon, Oxford

    Google Scholar 

  • Richardson DC, Carey CC, Bruesewitz DA, Weathers KC (2017) Intra- and inter-annual variability in metabolism in an oligotrophic lake. Aquat Sci 79:319–333

    Article  CAS  Google Scholar 

  • Saito S (1978) Seasonal succession of phytoplankton in Lake Sagami from 1973 to 1977 (in Japanese). Jpn J Limnol 4:147–155

    Article  Google Scholar 

  • Schindler DE, Jankowski K, A’mar ZT, Holtgrieve GW (2017) Two-stage metabolism inferred from diel oxygen dynamics in aquatic ecosystems. Ecosphere 8:1–15

    Article  CAS  Google Scholar 

  • Serizawa H, Amemiya T, Itoh K (2010) Mathematical analysis of cyanobacterial blooms in Lake Sagami and Lake Tsukui (in Japanese). Yokohama J Technol Manage Stud 9:1–14

    Google Scholar 

  • Solomon CT, Bruesewitz DA, Richardson DC, Rose KC, Van de Bogert MC, Hanson PC, Kratz TK, Larget B, Adrian R, Babin BL, Chiu C-Y, Hamilton DP, Gaiser EE, Hendricks S, Istvànovics V, Laas A, O’Donnell DM, Pace ML, Ryder E, Staehr PA, Torgersen T, Vanni MJ, Weathers KC, Zhu G (2013) Ecosystem respiration: drivers of daily variability and background respiration in lakes around the globe. Limnol Oceanogr 58:849–866

    Article  CAS  Google Scholar 

  • Staehr PA, Sand-Jensen K (2007) Temporal dynamics and regulation of lake metabolism. Limnol Oceanogr 52:108–120

    Article  CAS  Google Scholar 

  • Staehr PA, Sand-Jensen K, Raun AL, Nilsson B, Kidmose J (2010) Drivers of metabolism and net heterotrophy in contrasting lakes. Limnol Oceanogr 55:817–830

    Article  CAS  Google Scholar 

  • Tranvik LJ, Downing JA, Contner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314

    Article  CAS  Google Scholar 

  • Urban NR, Auer MT (2005) Carbon cycling in lake superior. J Geophys Res 110:1–17

    Article  Google Scholar 

  • Williams PJleB (1993) On the definition of plankton terms. ICES J Mar Sci 197:9–19

    Google Scholar 

  • Williams PJleB (1998) The balance of plankton respiration and photosynthesis in open oceans. Nature 394:55–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I express my deep thank to the editor and two anonymous reviewers who provided many helpful and constructive comments. I also would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Hashimoto.

Additional information

Handling Editor: Derek GRAY.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, S. Metabolic balance in the euphotic layer of Lake Sagami, Japan. Limnology 25, 63–72 (2024). https://doi.org/10.1007/s10201-023-00731-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-023-00731-8

Keywords

Navigation