Skip to main content

Advertisement

Log in

Volcanic and environmental impacts on subfossil chironomids from Northern Patagonia (Argentina) over the last 700 years

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

Southern South America, especially Patagonia, presents numerous glacial lakes holding proxies of past environmental and climate changes. This is useful to reconstruct past environmental changes, key for understanding Southern Hemisphere variability and the present. Our aim was to identify the volcanic and environmental impact that occurred during the last 700 year in Northern Patagonia (Argentina) using subfossil chironomids, organic matter content, and tephrochronology from short sediment cores of two lakes located between Los Alerces National Park and Esquel city. Both lakes have similar watershed characteristics and were affected by the same volcanic events, making them an excellent tool for study environmental changes. Although changes in chironomid assemblages were subtle along both cores, enviromental variations and faunal responses to volcanic ash (tephra) could be inferred. In the last 50 years, an increase of organic matter, chironomids typical of productive environments, and the presence of macrophytes, point towards an increase in lake productivity. Probably linked to the establishment of Esquel city and fisheries starting in 1966 AD. Four tephra were recorded along cores affecting chironomid abundance differently, showing that the effects of volcanic events are not unique onefold but are related to the characteristics of the ash, the effect of wind, rain, and/or macrophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfano F, Bonadonna C, Volentik AC et al (2011) Tephra stratigraphy and eruptive volume of the May, 2008, Chaitén eruption, Chile. Volcanology 73:613–630

    Article  Google Scholar 

  • Amigo A, Lara LE, Smith VC (2013) Holocene record of large explosive eruptions from Chaitén and Michinmahuida Volcanoes, Chile. Andean Geol 40:227–248

    Google Scholar 

  • Araneda A, Cruces F, Torres L et al (2007) Changes of sub-fossil chironomid assemblages associated with volcanic sediment deposition in an Andean lake (38°S), Chile. Rev Chil Hist Nat 80:141–156. https://doi.org/10.4067/S0716-078X2007000200002

    Article  Google Scholar 

  • Araqué AK (2015) Análisis del plan de manejo de la Reserva Natural Urbana Laguna La Zeta (Esquel–provincia del Chubut) bajo la visión de la gestión integrada de los recursos hídricos. Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas

  • Armitage PD, Cranston P, Pinder LC (1995) Chironomidae: biology and ecology of non-biting midges. Springer

    Book  Google Scholar 

  • Baigún C, Mugni H, Bonetto C (2006) Nutrient concentrations and trophic state of small Patagonian Andean lakes. J Freshw Ecol 21:449–456. https://doi.org/10.1080/02705060.2006.9665022

    Article  Google Scholar 

  • Barley EM, Walker IR, Kurek J et al (2006) A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth. J Paleolimnol 36:295–314. https://doi.org/10.1007/s10933-006-0014-6

    Article  Google Scholar 

  • Bengtsson L, Enell M (1986) Chemical analysis. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology, Chichester. John Wiley Sons, Chichester, England, pp 423–451

    Google Scholar 

  • Birks H, Lotter A (1994) The impact of the Laacher See volcano (11000 yr B.P.) on terrestrial vegetation and diatoms. J Paleolimnol 11:313–322

    Article  Google Scholar 

  • Blaauw M, Christen J (2011) Flexible paleoclimate age-depth model using an autoregressive fanna processs. Bayesian Anal 6:457–474

    Article  Google Scholar 

  • Brodersen KP, Odgaard BV, Vestergaard O, Anderson NJ (2001) Chironomid stratigraphy in the shallow and eutrophic Lake Søbygaard, Denmark: chironomid—macrophyte co-occurrence. Freshw Biol 46:253–267

    Article  Google Scholar 

  • Brooks S, Birks H (2000) Chironomid-inferred late-glacial air temperatures at Whitrig Bog, southeast Scotland. 15:759–764. https://doi.org/10.1002/1099-1417(200012)15:8<759::AID-JQS590>3.0.CO;2-V

  • Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of Palaearctic Chironomidae larvae in palaeoecology. Quat Res Assoc Tech Guide (10):i–vi.

  • Brooks S, Axford Y, Heiri O et al (2012) Chironomids can be reliable proxies for Holocene temperatures. A comment on Velle et al. (2010). Holocene 22:1495–1500. https://doi.org/10.1177/0959683612449757

    Article  Google Scholar 

  • Burgos M (2015) Indicadores de la actividad turística - Esquel - Chubut-Patagonia Argentina. Área Estadísticas - Secr Tur Esquel

  • Collier KJ (2002) Effects of flood regulation and sediment flushing on instream habitat and benthic invertebrates in a New Zealand river influenced by a volcanic eruption. River Res Appl 18:213–226

    Article  Google Scholar 

  • Cordon V, Forquera J, Gastiazoro J (1993) Estudio microclimático del área cordillerana del sudoeste de la provincia de Rio Negro. Cartas de precipitación. Universidad Nacional del Comahue

  • Correa-Metrio A, Dechnik Y, Lozano-García S, Caballero M (2014) Detrended correspondence analysis: a useful tool to quantify ecological changes from fossil data sets. Bol La Soc Geol Mex 66:135–143

    Article  Google Scholar 

  • Cranston PS (2010) Chiro key. http://chirokey.skullisland.info/

  • Daga R, Ribeiro Guevara S, Sanchez ML et al (2010) Tephrochronology of recent events in the Andean Range (northern Patagonia): spatial distribution and provenance of lacustrine ash layers in the Nahuel Huapi National Park. J Quat Sci 25:1113–1123. https://doi.org/10.1002/jqs.1378

    Article  Google Scholar 

  • Daga R, Ribeiro Guevara S, Arribére M (2016) New records of late Holocene tephras from Lake Futalaufquen (42.8°S), northern Patagonia. J South Am Earth Sci 66:232–247. https://doi.org/10.1016/j.jsames.2015.12.003

    Article  CAS  Google Scholar 

  • Dean WJ (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. J Sediment Res 44:242–248

    CAS  Google Scholar 

  • Dieffenbacher-Krall AC, Vandergoes MJ, Denton GH (2007) An inference model for mean summer air temperatures in the Southern Alps, New Zealand, using subfossil chironomids. Quat Sci Rev 26:2487–2504. https://doi.org/10.1016/j.quascirev.2007.06.016

    Article  Google Scholar 

  • Eastwood WJ, Tibby J, Roberts N et al (2002) The environmental impact of the Minoan eruption of Santorini (Thera): statistical analysis of palaeoecological data from Gölhisar, southwest Turkey. Holocene 12:431–444. https://doi.org/10.1191/0959683602hl557rp

    Article  Google Scholar 

  • Eggermont H, Heiri O, Russell J et al (2009) Paleotemperature reconstruction in tropical Africa using fossil Chironomidae (Insecta: Diptera). J Paleolimnol 43:413–435. https://doi.org/10.1007/s10933-009-9339-2

    Article  Google Scholar 

  • Engels S, Cwynar LC, Rees ABH, Shuman BN (2012) Chironomid-based water depth reconstructions: an independent evaluation of site-specific and local inference models. J Paleolimnol 48:693–709. https://doi.org/10.1007/s10933-012-9638-x

    Article  Google Scholar 

  • Frossard V, Millet L, Verneaux V et al (2013) Chironomid assemblages in cores from multiple water depths reflect oxygen-driven changes in a deep French lake over the last 150 years. J Paleolimnol 50:257–273. https://doi.org/10.1007/s10933-013-9722-x

    Article  Google Scholar 

  • Geller W, Hannappel S, Campos H (1997) Temperature and stratification of southern hemisphere temperate lakes in Patagonia (Chile, Argentina). SIL Proceedings 1922–2010(26):243–247. https://doi.org/10.1080/03680770.1995.11900709

    Article  Google Scholar 

  • Guilizzoni P, Massaferro J, Lami A et al (2009) Palaeolimnology of Lake Hess (Patagonia, Argentina): multi-proxy analyses of short sediment cores. Hydrobiologia 631:289–302. https://doi.org/10.1007/s10750-009-9818-5

    Article  CAS  Google Scholar 

  • Haberzettl T, Anselmetti FS, Bowen SW et al (2009) Late Pleistocene dust deposition in the Patagonian steppe - extending and refining the paleoenvironmental and tephrochronological record from Laguna Potrok Aike back to 55ka. Quat Sci Rev 28:2927–2939. https://doi.org/10.1016/j.quascirev.2009.07.021

    Article  Google Scholar 

  • Heinrichs ML, Walker IR (2006) Fossil midges and palaeosalinity: potential as indicators of hydrological balance and sea-level change. Quat Sci Rev 25:1948–1965. https://doi.org/10.1016/j.quascirev.2006.01.022

    Article  Google Scholar 

  • Heinrichs ML, Walker IR, Mathewes RW, Hebda RJ (1999) Holocene chironomid-inferred salinity and paleovegetation reconstruction from Kilpoola Lake, British Columbia. Géographie Phys Quat 53:211–221. https://doi.org/10.7202/004878ar

    Article  Google Scholar 

  • Heinrichs ML, Walker IR, Mathewes RW (2001) Chironomid-based paleosalinity records in southern British Columbia, Canada: a comparison of transfer functions. J Paleolimnol 26:147–159

    Article  Google Scholar 

  • Heiri O, Birks HJJBB, Brooks SJ et al (2003) Effects of within-lake variability of fossil assemblages on quantitative chironomid-inferred temperature reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 199:95–106. https://doi.org/10.1016/S0031-0182(03)00498-X

    Article  Google Scholar 

  • Il’yashuk E, Il’yashuk BP (2004) Analysis of chironomid remains from Lake sediments in paleoecological reconstruction. Water Resour 31:203–214

    Article  Google Scholar 

  • Juggins S (2003) C2 data analysis. Univ Newcastle, England

    Google Scholar 

  • Larocque-Tobler I, Heiri O, Wehrli M (2009) Late Glacial and Holocene temperature changes at Egelsee, Switzerland, reconstructed using subfossil chironomids. J Paleolimnol 43:649–666. https://doi.org/10.1007/s10933-009-9358-z

    Article  Google Scholar 

  • Luoto TP (2009) A Finnish chironomid- and chaoborid-based inference model for reconstructing past lake levels. Quat Sci Rev 28:1481–1489. https://doi.org/10.1016/j.quascirev.2009.01.015

    Article  Google Scholar 

  • Markgraf V, Bradbury JP, Schwalb A et al (2003) Holocene palaeoclimates of southern Patagonia: limnological and environmental history of Lago Cardiel, Argentina. Holocene 13:581–591. https://doi.org/10.1191/0959683603hl648rp

    Article  Google Scholar 

  • Massaferro J (2009) Paleoecología: el uso de los quironómidos fósiles (Diptera: Chironomidae) en reconstrucciones paleoambientales durante el Cuaternario en la Patagonia. Rev La Soc Entomológica Argentina 68:209–217

    Google Scholar 

  • Massaferro J, Brooks SJ (2002) Response of chironomids to Late Quaternary environmental change in the Taitao Peninsula, southern Chile. J Quat Sci 17:101–111. https://doi.org/10.1002/jqs.671

    Article  Google Scholar 

  • Massaferro JI, Corley J (1998) Enviromental disturbance and chironomid palaeodiversity. 2 kyr BP of history al Mascardi

  • Massaferro J, Larocque-Tobler I (2013) Using a newly developed chironomid transfer function for reconstructing mean annual air temperature at Lake Potrok Aike, Patagonia, Argentina. Ecol Indic 24:201–210. https://doi.org/10.1016/j.ecolind.2012.06.017

    Article  Google Scholar 

  • Massaferro J, Brooks SJ, Haberle SG (2005a) The dynamics of chironomid assemblages and vegetation during the Late Quaternary at Laguna Facil, Chonos Archipelago, southern Chile. Quat Sci Rev 24:2510–2522. https://doi.org/10.1016/j.quascirev.2005.03.010

    Article  Google Scholar 

  • Massaferro J, Guevara SR, Rizzo A, Arribére M (2005b) Short-term environmental changes in Lake Morenito (41° S, 71° W, Patagonia, Argentina) from the analysis of sub-fossil chironomids. Aquat Conserv Mar Freshw Ecosyst 15:23–30. https://doi.org/10.1002/aqc.640

    Article  Google Scholar 

  • Massaferro J, Ortega C, Fuentes R, Araneda A (2013a) Guia para la Identificación de Tanytarsini subfósiles (Diptera: Chironomidae: Chironominae) de la Patagonia. Ameghiniana 50:319–334. https://doi.org/10.5710/AMGH.05.03.2013.566

    Article  Google Scholar 

  • Massaferro J, Recasens C, Larocque-Tobler I et al (2013b) Major lake level fluctuations and climate changes for the past 16,000 years as reflected by diatoms and chironomids preserved in the sediment of Laguna Potrok Aike, southern Patagonia. Quat Sci Rev 71:167–174. https://doi.org/10.1016/j.quascirev.2012.07.026

    Article  Google Scholar 

  • Massaferro JI, Larocque-Tobler I, Brooks SJ et al (2014) Quantifying climate change in Huelmo mire (Chile, Northwestern Patagonia) during the Last Glacial Termination using a newly developed chironomid-based temperature model. Palaeogeogr Palaeoclimatol Palaeoecol 399:214–224. https://doi.org/10.1016/j.palaeo.2014.01.013

    Article  Google Scholar 

  • Massaferro J, Correa-Metrio A, Montes de Oca F, Mauad M (2018) Contrasting responses of lake ecosystems to environmental disturbance: a paleoecological perspective from northern Patagonia (Argentina). Hydrobiologia 816:79–89. https://doi.org/10.1007/s10750-016-3081-3

    Article  CAS  Google Scholar 

  • Modenutti BE, Balseiro EG, Elser JJ et al (2013) Effect of volcanic eruption on nutrients, light, and phytoplankton in oligotrophic lakes. Limnol Oceanogr 58:1165–1175. https://doi.org/10.4319/lo.2013.58.4.1165

    Article  Google Scholar 

  • Modenutti B, Balseiro E, Bastidas Navarro M, Corman J (2015) Effects of volcanic pumice inputs on microbial community composition and dissolved C/P ratios in lake waters: an experimental approach. Microb Ecol 71:18–28

    Article  Google Scholar 

  • Moreno PI, Alloway BV, Villarosa G et al (2014) Intermittent explosive volcanism in the Chaitén sector of the southern Andes (43°S) over the last 10,000 years. Geology 43:47–50

    Article  Google Scholar 

  • Moreno PI, Alloway BV, Villarosa G et al (2015) A past-millennium maximum in postglacial activity from Volcán Chaitén, southern Chile. Geology 43:47–50. https://doi.org/10.1130/G36248.1

    Article  Google Scholar 

  • Motta L, Massaferro J (2019) Climate and site-specific factors shape chironomid taxonomic and functional diversity patterns in northern Patagonia. Hydrobiologia 839:131–143. https://doi.org/10.1007/s10750-019-04001-6

    Article  Google Scholar 

  • Naranjo JA, Stern CR (2004) Holocene tephrochronology of the southernmost part (42°30’-45°S) of the Andean Southern Volcanic Zone. Rev Geológica Chile 31:225–240. https://doi.org/10.4067/S0716-02082004000200003

    Article  CAS  Google Scholar 

  • Nazarova L, Herzschuh U, Wetterich S et al (2011) Chironomid-based inference models for estimating mean July air temperature and water depth from lakes in Yakutia, northeastern Russia. J Paleolimnol 45:57–71. https://doi.org/10.1007/s10933-010-9479-4

    Article  Google Scholar 

  • Nazarova L, Bleibtreu A, Hoff U et al (2017) Changes in temperature and water depth of a small mountain lake during the past 3000 years in Central Kamchatka reflected by a chironomid record. Quat Int 447:46–58. https://doi.org/10.1016/j.quaint.2016.10.008

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, et al (2017) H. vegan: Community ecology package. R package version 2.4-3

  • Oksanen J, Blanchet FG, Friendly M et al (2020) Package “vegan”. Community Ecology Package Version 2.5-7

  • Rieradevall M, Brooks SJ (2001) An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephalic setation. J Paleolimnol 25:81–99

    Article  Google Scholar 

  • Serra MN, García ML, Maidana N et al (2016) Little ice age to present paleoenvironmental reconstruction based on multiproxy analyses from Nahuel Huapi lake (Patagonia, Argentina). Ameghiniana 53:58–73. https://doi.org/10.5710/aMGH.14.09.2015.2912

    Article  Google Scholar 

  • Smol J, Birks H, Last W (2002) Zoological indicators in lake sediments: an introduction. Developments in Paleoenviromental Research. In: Tracking Environmental Change Using Lake Sediments. Zoological Indicators. Kluwer Academic Publishers. pp 125–151

  • Stewart EM, Michelutti N, Blais JM et al (2013) Contrasting the effects of climatic, nutrient, and oxygen dynamics on subfossil chironomid assemblages: a paleolimnological experiment from eutrophic High Arctic ponds. J Paleolimnol 49:205–219. https://doi.org/10.1007/s10933-012-9658-6

    Article  Google Scholar 

  • Szulkin D (2003) Diseño y Planificación de la Reserva Natural Urbana Laguna La Zeta. Tesis Maest en “Dirección y Planif Medioambiental” Univ Cádiz

  • Urrutia R, Araneda A, Cruces F et al (2007) Changes in diatom, pollen, and chironomid assemblages in response to a recent volcanic event in Lake Galletué (Chilean Andes). Limnol - Ecol Manag Inl Waters 37:49–62. https://doi.org/10.1016/j.limno.2006.09.003

    Article  CAS  Google Scholar 

  • van Hardenbroek M, Heiri O, Wilhelm MF et al (2011) How representative are subfossil assemblages of Chironomidae and common benthic invertebrates for the living fauna of Lake De Waay, the Netherlands? Aquat Sci 73:247–259. https://doi.org/10.1007/s00027-010-0173-4

    Article  CAS  Google Scholar 

  • Verschuren D, Cumming BF, Laird KR (2004) Quantitative reconstruction of past salinity variations in African lakes: assessment of chironomid-based inference models (Insecta : Diptera) in space and time. Can J Fish Aquat Sci 998:986–998. https://doi.org/10.1139/F04-041

    Article  Google Scholar 

  • Walker I (1995) Chironomids as indicators of past environmental change. In: Armitage PD, Cranston PS, Pinder LCV (eds.) The Chironomidae: Biology and ecology of non-biting midges. Chap 17. Chapman & Hall. pp 405–422. ISBN 041245260

  • Walker IR, Cwynar LC (2006) Midges and palaeotemperature reconstruction—the North American experience. Quat Sci Rev 25:1911–1925. https://doi.org/10.1016/j.quascirev.2006.01.014

    Article  Google Scholar 

  • Walker IR, Wilson SE, Smol JP (1995) Chironomidae (Diptera): quantitative palaeosalinity indicators for lakes of western Canada. Can J Fish Aquat Sci 52:950–960. https://doi.org/10.1139/f95-094

    Article  Google Scholar 

  • Walker IR, Levesque J, Cwynar LC et al (1997) An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada, pp 165–178

  • Williams N, Rieradevall M, Añon Suarez D et al (2016) Chironomids as indicators of natural and human impacts in a 700-yr record from the northern Patagonian Andes. Quat Res 86:120–132

    Article  Google Scholar 

  • Wolinski L, Laspoumaderes C, Bastidas Navarro M et al (2013) The susceptibility of cladocerans in North Andean Patagonian lakes to volcanic ashes. Freshw Biol 58:1878–1888. https://doi.org/10.1111/fwb.12176

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Valeria Outes Grupo de Estudios Ambientales (GEA) Lab, IPATEC (Universidad Nacional del Comahue—Concejo Nacional de Investigaciones Científicas y Técnicas) for the help in LOI and tephra analysis; and to Dr. Luciana Motta (Concejo Nacional de Investigaciones Científicas y Técnicas- Programa de estudios aplicados a la Conservación del Parque Nacional Nahuel Huapi) for the help checking the manuscript writing. This study was funded by PIP CONICET 112-200801-01830, PIP CONICET 112 201001 00311 and PICT 2010 2046 (FONCyT). Ethical standards: all the experiments comply with the current laws of Argentina, in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Noel Serra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Giri Kattel.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 296 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serra, M.N., Massaferro, J. & Villarosa, G. Volcanic and environmental impacts on subfossil chironomids from Northern Patagonia (Argentina) over the last 700 years. Limnology 22, 337–346 (2021). https://doi.org/10.1007/s10201-021-00660-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-021-00660-4

Keywords

Navigation