Lipid and fatty acid composition of scavenging amphipods Ommatogammarus spp. from different depths of lake Baikal

Abstract

The lipid and fatty acid content of benthopelagic scavenging amphipods Ommatogammarus flavus and O. albinus from different depths of Lake Baikal were studied. These amphipods, known to move across a wide range of depths in Lake Baikal, had a relatively high level of total lipids (up to 46% dry weight) in comparison to other aquatic amphipods. This high level of total lipids resulted from a high concentration of storage lipids (triacylglycerols). The monounsaturated 18:1(n-9) acid in combination with 16:1(n-7), and 18:1(n-7) fatty acids were dominant in the amphipods, reflecting their deep-dwelling scavenging mode of life. Local groups of amphipods were distinguished along a Lake Baikal depth gradient based on the primarily diet-associated differences in fatty acid composition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ackman RG, Hooper SN (1973) Non-methylene-interupted fatty acids in lipids of shallow-water marine invertebrates: a comparison of two molluscs (Littorina littorea and Lunatia triseriata) with the sand shrimp (Crangon septemspinosus). Comp Biochem Physiol B 46:153–165. https://doi.org/10.1016/0305-0491(73)90057-6

    CAS  Article  Google Scholar 

  2. Allen EE, Bartlett DH (2002) Structure and regulation of the omega-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9The GenBank accession numbers for the sequences reported in this paper are AF409100 and AF467805. Microbiol 148(6):1903–1913. https://doi.org/10.1099/00221287-148-6-1903

    CAS  Article  Google Scholar 

  3. Arts MT, Kohler CC (2009) Health and conditions in fish: the influence of lipids on membrane competency and immune response. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids in aquatic ecosystems. Springer, Dordrecht, Heidelberg, London, New York, USA, pp 237–257

    Chapter  Google Scholar 

  4. Atlas R, Busdosh M (1982) Bacterial populations associated with the Arctic amphipod Boeckosimus affinis. Can J Microbiol 28:92–99. https://doi.org/10.1139/m82-008

    Article  Google Scholar 

  5. Axenov-Gribanov DV, Voytsekhovskaya IV, Tokovenko BT, Protasov ES, Gamaiunov SV, Rebets YV, Luzhetskyy AN, Timofeyev MA (2016) Actinobacteria isolated from an underground lake and moonmilkspeleo them from the biggest conglomeratic karstic cave in siberia as sources of novel biologically active compounds. PLoS ONE 11:e0149216. https://doi.org/10.1371/journal.pone.0149216

    CAS  Article  PubMed  Google Scholar 

  6. Bazarsadueva SV (2013) Ecological features of the distribution of lipids of hydrobionts in the deep-water zone of Lake Baikal. Dissertation, Irkutsk, Russia

  7. Bazarsadueva SV, Radnaeva LD (2013) Fatty-acid composition of deep-water Baikal amphipods Ommatogammarus albinus. Chemistry for Sustainable Development 21:499–502. https://www.sibran.ru/upload/iblock/6a3/6a3e39912d2b8dc34d410d613f664440.pdf

  8. Bazarsadueva SV, Radnaeva LD, Tulokhonov AK (2019) Comparative analysis of the fatty acid composition of deep-water Baikal amphipods. Crustaceana 92:57–72. https://doi.org/10.1163/15685403-00003856

    Article  Google Scholar 

  9. Bazikalova AYa (1945) Amphipods of Lake Baikal. Tr. Baykal. Limnolog. st. 11:1–440

  10. Bell JG, Sargent JR (2003) Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture 218:491–499. https://doi.org/10.1016/S0044-8486(02)00370-8

    CAS  Article  Google Scholar 

  11. Belyaev G (1989) Deep-sea oceanic trenches and their fauna. Nauka, Moscow

    Google Scholar 

  12. Berkin NS, Makarov AA, Rusinek OT (2009) Baikal studies: studies allowance. Izd-vo Irkut. un-ta, Irkutsk, Russia

    Google Scholar 

  13. Boldyrev AA (1985) Biological membranes and ion transport. Moscow State University, Moscow

    Google Scholar 

  14. Boldyrev AA, Kaivarainen EI, Ilyukha VA (2006) Biomembranology: study guide. KarRC RAS, Petrozavodsk, Russia

    Google Scholar 

  15. Britton JC, Morton B (1994) Marine carrion and scavengers. Oceanogr Mar Biol Ann Rev 32:369–434

    Google Scholar 

  16. Bühring SI, Christiansen B (2001) Lipids in selected abyssal benthopelagic animals: links to the epipelagic zone? Prog Oceanogr 50:369–382. https://doi.org/10.1016/S0079-6611(01)00061-1

    Article  Google Scholar 

  17. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG (2014) Minireview: Gut microbiota: the neglected endocrine organ. Mol Endocrinol 28:1221–1238

    Article  Google Scholar 

  18. Dalsgaard J, St John M, Kattner G, Muller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340. https://doi.org/10.1016/S0065-2881(03)46005-7

    Article  PubMed  Google Scholar 

  19. DeLong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Appl Environ Microbiol 51(4):730–737

    CAS  Article  Google Scholar 

  20. Drazen JC, Phleger CF, Guest MA, Nichols PD (2008) Lipid, sterols and fatty acids of abyssal polychaetas, crustaceans, and a cnidarian from the northeast Pacific Ocean. MEPS 372:157–167. https://doi.org/10.3354/meps07707

    CAS  Article  Google Scholar 

  21. Dybowsky BN (1874) Beiträge zur näheren Kenntris der in dem Baikal-See vorkommenden niederen Krebse aus der Gruppe der Gammariden. In: Herausgegeben von der Russ. Entomol. Gesellsch. Zu St. Petersburg. Buchdr. Von W. Besobrasoff and Comp., St. Petersburg, Russia

  22. Engelbrecht FM, Mari F, Anderson JT (1974) Cholesterol determination in serum. A rapid direction method. S Afr Med J 48(7):250–256

    CAS  PubMed  Google Scholar 

  23. Falk-Petersen S, Hagen W, Kattner G, Clarke A, Sargent J (2000) Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Can J Fish Aquat Sci 57:178–191. https://doi.org/10.1139/f00-194

    CAS  Article  Google Scholar 

  24. Folch J, Lees M, Sloan-Stanley GH (1957) A simple method for the isolation and purification of total lipids animal tissue (for brain, liver and muscle). J Biol Chem 226:497–509

    CAS  Article  Google Scholar 

  25. Gergs R, Steinberger N, Basen T, Martin-Creuzburg D (2014) Dietary supply with essential lipids affects growth and survival of the amphipod Gammarus roeselii. Limnologica 46:109–115. https://doi.org/10.1016/j.limno.2014.01.003

    CAS  Article  Google Scholar 

  26. Gladyshev MI, Arts MT, Sushchik NI (2009) Preliminary estimates of the export of omega-3 highly unsaturated fatty acids (EPA+ DHA) from aquatic to terrestrial ecosystems. Lipids in aquatic ecosystems. Springer, New York, NY, pp 179–210

    Chapter  Google Scholar 

  27. Gladyshev MI, Kolmakova OV, Tolomeev AP, Anishchenko OV, Makhutova ON, Kolmakova AA, Sushchik NN (2015) Differences in organic matter and bacterioplankton between sections of the largest Arctic river: Mosaic or continuum? Limnol Oceanogr 60(4):1314–1331. https://doi.org/10.1002/lno.10097

    Article  Google Scholar 

  28. Graeve M, Hagen W, Kattner G (1994) Herbivorous or omnivorous? On the significance of lipid composition as trophic markers in Antarctic copepods. Deep-Sea Res I 41:915–924

    Article  Google Scholar 

  29. Graeve M, Dauby P, Scailteur Y (2001) Combined lipid, fatty acid and digestive tract content analyses: a penetrating approach to estimate feeding model of Antarctic amphipods. Polar Biol 24:853–862. https://doi.org/10.1007/s003000100295

    Article  Google Scholar 

  30. Hill C, Quigley MA, Cavaletto JF, Gordon W (1992) Seasonal changes in lipid content and composition in the benthic amphipods Monoporeia affinis and Pontoporeia femorata. Limnol Oceanogr 37:1280–1289. https://doi.org/10.4319/lo.1992.37.6.1280

    CAS  Article  Google Scholar 

  31. Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, NY

    Google Scholar 

  32. Howell KL, Pond DW, Billett DSM, Tyler PA (2003) Feeding ecology of deep-sea seastars (Echinodermata: Asteroidea): a fatty-acid biomarker approach. Mar Ecol Prog Ser 255:193–206

    CAS  Article  Google Scholar 

  33. Ivanter EV, Korosov AV (2010) Elementary biometry. Petrozavodsk, Russia

    Google Scholar 

  34. Jamieson GR (1975) GLC-identification techniques for long chain unsaturated fatty acids. J Chromatogr Sci 13(10):491–497. https://doi.org/10.1093/chromsci/13.10.491

    CAS  Article  PubMed  Google Scholar 

  35. Kabakov RI (2016) R in action. Analysis and visualization of data in the program R. DMK Press, Moscow, Russia, 588 p

    Google Scholar 

  36. Kato M, Hayashi R (1999) Effects of high pressure on lipids and biomembranes for understanding high-pressure-induced biological phenomena. Biosci Biotechnol Biochem 63:1321–1328. https://doi.org/10.1271/bbb.63.1321

    CAS  Article  PubMed  Google Scholar 

  37. Khelashvili G, Johner N, Zhao G, Harries D, Scott HL (2014) Molecular origins of bending rigidity in lipids with isolated and conjugated double bonds: the effect of cholesterol. Chem Phys Lipids 178:18–26. https://doi.org/10.1016/j.chemphyslip.2013.12.012

    CAS  Article  PubMed  Google Scholar 

  38. Kolotilo LG (2001) Problems of the physical-geographical study of Lake Baikal. Russian. geo about-in, SPb, Russia

  39. Kozhova OM, Izmest’eva LR (1998) Lake Baikal evolution and biodiversity. Buckhuys Publishers, Leiden

    Google Scholar 

  40. Kraft A, Graeve M, Janssen D, Greenacre M, Falk-Petersen S (2015) Arctic pelagic amphipods: lipid dynamics and life strategy. J Plankton Res 37:790–807. https://doi.org/10.1093/plankt/fbv052

    CAS  Article  Google Scholar 

  41. Lapin VI, Shatunovsky MI (1981) Features of composition, physiological and ecological value of fish lipids. Uspehi sovremennoi biologii 92(6):380–394

    CAS  Google Scholar 

  42. Legeżyńska J, Kedra M, Walkusz W (2012) When season does not matter: summer and winter trophic ecology of Arctic amphipods. Hydrobiol 684:189–214. https://doi.org/10.1007/s10750-011-0982-z#citeas

    Article  Google Scholar 

  43. Lehninger AL, Nelson DL, Cox MM (1993) Principles of biochemistry. Worth Publishers, New York

    Google Scholar 

  44. Lewis RW (2011) Fatty acid composition of some marine animals from various depths. J Fish Res Board Can 24(5):1101–111510

    Article  Google Scholar 

  45. Makhutova ON, Shulepina SP, Sharapova TA, Kolmakova AA, Glushchenko LA, Kravchuk ES, Gladyshev MI (2018) Intraspecies variability of fatty acid content and composition of a cosmopolitan benthic invertebrate Gammarus lacustris. Inland Waters 8(3):356–367. https://doi.org/10.1080/20442041.2018.1487157

    CAS  Article  Google Scholar 

  46. Morris RJ (1984) The endemic faunae of Lake Baikal: their general biochemistry and detailed lipid composition. Proc R Soc London B Biol Sci 222(1226):51–78

    CAS  Article  Google Scholar 

  47. Murzina SA (2010) The role of lipids and their fatty acid components in the biochemical adaptations of the daubed shanny Leptoclinus maculatus F. of the northwestern coast of Svalbard. Dissertation (Ph.D.), Petrozavodsk, Russia

  48. Murzina SA (2019) The role of lipids and fatty acids in ecology and biochemical adaptations of fish from North seas. Dissertation (Dr.Sci.), Moscow, Russia

  49. Nelson MM, Mooney BD, Nichols PD, Phleger CF (2001) Lipids of Antarctic Ocean amphipods: food chain interactions and the occurrence of novel biomarkers. Marine Chem 73:53–64. https://doi.org/10.1016/S0304-4203(00)00072-4

    CAS  Article  Google Scholar 

  50. Nemova NN, Nefedova ZA, Murzina SA, Veselov AE, Ripatti PO, Pavlov DS (2015) The effect of environmental conditions on the dynamics of fatty acids in juveniles of the Atlantic salmon (Salmosalar L.). Russ J Ecol 46(3):267–271. https://doi.org/10.1134/S106741361503008X

    CAS  Article  Google Scholar 

  51. Nichols DS, Nichols PD, McMeekin TA (1993) Polyunsaturated fatty acids in Antarctic bacteria. Antarctic Sci 2:149–160

    Article  Google Scholar 

  52. Ntambi JM (1999) Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res. 40:1549–1558

    CAS  Article  Google Scholar 

  53. Nygård H, Berge J, Søreide JE, Vihtakari M, Falk-Petersen S (2012) The amphipod scavenging guild in two Arctic fjords: seasonal variations, abundance and trophic interactions. Aquat Biol 14:247–264. https://doi.org/10.3354/ab00394

    Article  Google Scholar 

  54. Parzanini C, Parrish CC, Hamel J-F, Mercier A (2018) Functional diversity and nutritional content in a deep-sea faunal assemblage through total lipid, lipid class, and fatty acid analyses. PLoS ONE 13(11):e0207395. https://doi.org/10.1371/journal.pone.0207395

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Pond DW, Allen CE, Bell MV, Van Dover CL, Fallick AE, Dixon DR, Sargent JR (2002) Origins of long-chain polyunsaturated fatty acids in the hydrothermal vent worms Ridgeia piscesae and Protis hydrothermica. Mar Ecol Prog Ser 225:219–226

    CAS  Article  Google Scholar 

  56. Protasov ES, Axenov-Gribanov DV, Voytsekhovskaya IV, Timofeyev MA (2016) Assessment of actinobacteria role in activity of deep-water endemic amphipod species belonging to the genus Ommatogammarus. J Stress Physiol Biochem 12(4):23–30

    Google Scholar 

  57. Radnaeva LD, Popov DV, Grahl-Nielsen O, Khanaev IV, Bazarsadueva SV, Käkelä R (2017) Fatty acid composition in the white muscle of Cottoidei fishes of Lake Baikal reflects their habitat depth. Environ Biol Fish 100:1623–1641. https://doi.org/10.1007/s10641-017-0670-6

    Article  Google Scholar 

  58. Sargent J, Parkes RJ, Mueller-Harvey I, Henderson RJ (1987) Lipid biomarkers in marine ecology. In: Sleigh MA (ed) Microbes in the sea. Ellis Harwood, Chichester, pp 119–138 https://ci.nii.ac.jp/naid/10008557822/

  59. Shatunovsky MI (1980) Ecological patterns of marine fish metabolism. Nauka, Moscow

    Google Scholar 

  60. Shi L, Xiao W, Liu Z, Pan B, Xu Y (2018) Diet change of hadal amphipods revealed by fatty acid profile: a close relationship with surface ocean. Mar Environ Res 142:250–256. https://doi.org/10.1016/j.marenvres.2018.10.012

    CAS  Article  PubMed  Google Scholar 

  61. Shulman GYe, Yuneva TV (1989) Ecological and physiological aspects of the study of fish lipids. Ekologicheskaya fiziologiya i biohimiya ryb: abstracts. Yaroslavl', Russia, pp 244–246

  62. Sideleva VG (1996) Comparative character of the deep-water and inshore cottoid fishes endemic to Lake Baikal. J Fish Biol 49:192–206

    Article  Google Scholar 

  63. Sidorov VS, Lizenko EI, Bolgova OM, Nefedova ZA (1972) Fish Lipids. 1. Methods of analysis. Tissue specificity of whitefish Coregonus albula L. In: Lososevyye (Salmonidae) Karelii. Karel. Fil. AN SSSR, Petrozavodsk, Russia, pp 152–163

  64. Takhteev VV (2000) Essays on the specimens of Lake Baikal (systematics, comparative ecology, evolution). Izd-vo Irkut. un-ta, Irkutsk

    Google Scholar 

  65. Takhteev VV (2009) Deep-water amphipods of Lake Baikal, collected from Paisis submarine habitable vehicles. Baikal Zoo J 2:13–16

    Google Scholar 

  66. Takhteev VV (2016) Endemic amphipods (Crustacea: Amphipoda) of Lake Baikal as ecological analogues of life forms of the highest crustaceans of the World Ocean. Marine biological research: achievements and prospects: in 3 volumes: collection of materials. Vseros. scientific and practical conf. from int. participation dedicated to the 145th anniversary of the Sevastopol Biological Station (Sevastopol, September 19–24, 2016). ECOSI-Hydrophysics, Sevastopol 2:166–169 (In Russ)

    Google Scholar 

  67. Takhteev VV, Berezina NA, Sidorov DA (2015) Checklist of the Amphipoda (Crustacea) from continental waters of Russia, with data on alien species. Arthropoda Selecta. 24(3):335–370

    Google Scholar 

  68. Timofeyev MA, Shatilina ZM, Kolesnichenko AV, Kolesnichenko VV, Pflugmacher S, Steinberg CEW (2006) Natural organic matter (NOM) promotes oxidative stress response in freshwater amphipods Gammaruslacustris Sars and G. tigrinus (Sexton). Sci Total Environ 366(2–3):673–681. https://doi.org/10.1016/j.scitotenv.2006.02.003

    CAS  Article  PubMed  Google Scholar 

  69. Tkach NP, Vysotskaya RU (2007) Comparative study of the lipid composition of amphipods dwelling in conditions of different salinity. Fundamental'nyye issledovaniya. 10:89–90. http://fundamental-research.ru/ru/article/view?id=4520

  70. Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184. https://doi.org/10.1080/713610925

    CAS  Article  Google Scholar 

  71. Tsyganov EP (1971) Method of direct methylation of lipids after TLC without elution with silica gel. Labor. Delo. 8:490–493

    CAS  Google Scholar 

  72. Velansky PV, Kostetsky EYa (2008) Lipids of marine cold-water fish. Russ J Mar Biol 34(1):51–56. https://doi.org/10.1134/S1063074008010070

    CAS  Article  Google Scholar 

  73. Zhang W, Watanabe HK, Ding W, Yi Lan Y, Tian R-M, Sun J, Chen C, Cai L, Li Y, Oguri K, Toyofuku T, Kitazato H, Drazen JC, Bartlett D, Qiana P-Y (2018) Gut microbial divergence between two populations of the hadal amphipod Hirondellea gigas. Appl Environ Microbiol 85:e02032-18

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Z.A. Nefedova and E.V. Borvinskaya for their initiative and cooperation during the study.

Funding

The study was carried out with financial support for the budget-funded research area of KarRC RAS [# 0218-2019-0076] (lipid and fatty acid profile analysis including statistical analysis and discussion) and under state assignment [# FZZE-2020-0026], with partial financial support from the Russian Foundation for Basic Research and Government of the Irkutsk Region [grant # 17-44-388067 r-a] (sampling of amphipods), and the Russian Science Foundation [# 20-64-46003]. Financial and technical support was received also from the Baikal Research Centre, Lake Baikal Foundation, and M. Lomonosov International Joint Program between DAAD and the Ministry of Education and Science of the Russian Federation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Svetlana N. Pekkoeva.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The authors declare to have no conflict of interest and that all applicable institutional, national, or international guidelines for the use and care of animals were strictly followed in the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Marianne V. Moore.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pekkoeva, S.N., Voronin, V.P., Shatilina, Z.M. et al. Lipid and fatty acid composition of scavenging amphipods Ommatogammarus spp. from different depths of lake Baikal. Limnology (2021). https://doi.org/10.1007/s10201-021-00657-z

Download citation

Keywords

  • Lipids
  • Freshwater invertebrates
  • Amphipods
  • Adaptations
  • Lake Baikal