Skip to main content

To what degree do spatial and limnological predictors explain the occurrence of a submerged macrophyte species in lotic and semi-lotic/lentic environments of a dammed river?

Abstract

Insufficient knowledge about ecology of weed macrophytes from a large-scale perspective narrows the necessary decision-making for biodiversity conservation. The present study aimed to assess the occurrence frequency of Egeria densa in lotic and lentic/semi-lotic environments from a Brazilian dammed river, as well as to quantify the attributed explanation (pure or combined) by limnological and spatial variables on species occurrence frequency. Between 2006 and 2010, we repeatedly visited sample points classified as lotic (45) or lentic/semi-lotic environments (23) to collect data on species occurrence and limnological variables. We also generated spatial variables derived from latitude and longitude of sample points. E. densa showed a recurrent occurrence in the sample points classified as lentic/semi-lotic. Both spatial variables (16) and limnological variables (total phosphorus, nitrate, nitrite, transparency and turbidity) significantly contributed to explaining the species occurrence frequency. Forty-nine percent of the occurrence frequency variation was accounted purely by spatial variables. However, less than five percent of occurrence frequency variation was accounted purely by limnological variables. The several dams placed along the river determined the lentic/semi-lotic environments formation and regulated the dispersion processes of individuals of E. densa, consequently causing a recurrent occurrence of this species in particular environmental classes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. ANA Agência Nacional de Águas do Brasil (2016) Rede hidrográfica do São Francisco. https://www2.ana.gov.br/Paginas/portais/bacias/SaoFrancisco.aspx. Cited 26 Jul 2016

  2. Barko JW, Gunnison D, Carpenter SR (1991) Sediment interactions with submersed macrophyte growth and community dynamics. Aquat Bot 41:41–65. https://doi.org/10.1016/0304-3770(91)90038-7

    Article  Google Scholar 

  3. Bauman D, Drouet T, Fortin MJ, Dray S (2018) Optimizing the choice of a spatial weighting matrix in eigenvector-based methods. Ecology 99:2159–2166. https://doi.org/10.1002/ecy.2469

    Article  PubMed  Google Scholar 

  4. Bellinger J, Davis SL (2017) Investigating the role of water and sediment chemistry from two reservoirs in regulating the growth potential of Hydrilla verticillata (L.f.) Royle and Cabomba caroliniana A. Gray Aquat Bot 136:175–185. https://doi.org/10.1016/j.aquabot.2016.10.005

    CAS  Article  Google Scholar 

  5. Bertrin V, Boutry S, Jan G, Ducasse G, Grigoletto F, Ribaudo C (2017) Effects of wind-induced sediment resuspension on distribution and morphological traits of aquatic weeds in shallow lakes. J Limnol 76:84–96. https://doi.org/10.4081/jlimnol.2017.1678

    Article  Google Scholar 

  6. Bini LM, Thomaz SM (2005) Prediction of Egeria najas and Egeria densa occurrence in a large subtropical reservoir (Itaipu Reservoir, Brazil-Paraguay). Aquat Bot 83:227–238. https://doi.org/10.1016/j.aquabot.2005.06.010

    Article  Google Scholar 

  7. Bini M, Thomaz SM, Murphy KJ, Camargo AFM (1999) Aquatic macrophyte distribution in relation to water and sediment conditions in the Itaipu Reservoir, Brazil. Hydrobiologia 415:147–154. https://doi.org/10.1023/A:1003856629837

    Article  Google Scholar 

  8. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632. https://doi.org/10.1890/07-0986.1

    Article  PubMed  Google Scholar 

  9. Bonis A, Lepart J, Grillas P (1995) Seed bank dynamics and coexistence of annual macrophytes in a temporary and variable habitat. Oikos 74:81–92. https://doi.org/10.2307/3545677

    Article  Google Scholar 

  10. Bornette G, Puijalon S (2011) Response of aquatic plants to abiotic factors: a review. Aquat Sci 73:1–14. https://doi.org/10.1007/s00027-010-0162-7

    CAS  Article  Google Scholar 

  11. Bottino F, Calijuri MC, Murphy KJ (2013) Temporal and spatial variation of limnological variables and biomass of different macrophyte species in a Neotropical reservoir (São Paulo—Brazil). Acta Limnol Bras 25:387–397. https://doi.org/10.1590/S2179-975X2013000400004

    CAS  Article  Google Scholar 

  12. Brundu G (2015) Plant invaders in European and Mediterranean inland waters: profiles, distribution, and threats. Hydrobiologia 746:61–79. https://doi.org/10.1007/s10750-014-1910-9

    Article  Google Scholar 

  13. Capers RS, Selsky R, Bugbee GJ (2010) The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshw Biol 55:952–966. https://doi.org/10.1111/j.1365-2427.2009.02328.x

    Article  Google Scholar 

  14. Capon SJ, Brock MA (2006) Flooding, soil seed bank dynamics and vegetation resilience of a hydrologically variable desert floodplain. Freshw Biol 51:206–223. https://doi.org/10.1111/j.1365-2427.2005.01484.x

    Article  Google Scholar 

  15. Casanova MT, Brock MA (2000) How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecol 147:237–250. https://doi.org/10.1023/A:1009875226637

    Article  Google Scholar 

  16. Chambers PA, Kalff J (1985) Depth distribution and biomass of submersed aquatic macrophyte communities in relation to secchi. Can J Fish Aquat Sci 42:701–716. https://doi.org/10.1139/f85-090

    Article  Google Scholar 

  17. Chase JM (2014) Spatial scale resolves the niche versus neutral theory debate. J Veg Sci 25:319–322. https://doi.org/10.1111/jvs.12159

    Article  Google Scholar 

  18. Chavent M (2017) ClustOfVar: clustering of variables. R package version 1.1. https://cran.r-project.org/web/packages/ClustOfVar/ClustOfVar.pdf. Cited 10 Jan 2020

  19. Chavent M, Kuentz-Simonet V, Liquet B, Saracco J (2012) ClustOfVar: an R package for the clustering of variables. J Stat Softw 50:1–16. https://doi.org/10.18637/jss.v050.i13

    Article  Google Scholar 

  20. Clarke SJ (2002) Vegetation growth in rivers: influences upon sediment and nutrient dynamics. Prog Phys Geog 26:159–172. https://doi.org/10.1191/0309133302pp324ra

    Article  Google Scholar 

  21. De Lima AE, Severi W (2014) Estado trófico na cascata de reservatórios de um rio no semiárido brasileiro. Rev Bras Ciênc Agrar 9:124–133. https://doi.org/10.5039/agraria.v9i1a2603

    Article  Google Scholar 

  22. Diniz-Filho JAF, Siqueira T, Padial AA, Rangel TF, Landeiro VL, Bini LM (2012) Spatial autocorrelation analysis allows disentangling the balance between neutral and niche processes in metacommunities. Oikos 121:201–210. https://doi.org/10.1111/j.1600-0706.2011.19563.x

    Article  Google Scholar 

  23. Dray S, Legendre P, Peres-Neto P (2006) Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol Model 196:483–493. https://doi.org/10.1016/j.ecolmodel.2006.02.015

    Article  Google Scholar 

  24. Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guenard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner HH (2020) Adespatia’: multivariate multiscale spatial analysis. R package version 0.3–8. https://cran.r-project.org/web/packages/adespatial/adespatial.pdf. Cited 10 Jan 2020

  25. Durand J, Fleenor W, McElreath R, Santos MJ, Moyle P (2016) Physical controls on the distribution of the submersed aquatic seed Egeria densa in the Sacramento—San Joaquin Delta and implications for habitat restoration. SFEWS 14:1–20. https://doi.org/10.15447/sfews.2016v14iss1art4

    Article  Google Scholar 

  26. Eisenlohr PV (2014) Persisting challenges in multiple models: a note on commonly unnoticed issues regarding collinearity and spatial structure of ecological data. Braz J Bot 37:365–371. https://doi.org/10.1007/s40415-014-0064-3

    Article  Google Scholar 

  27. Esteves FA (2011) Fundamentos da limnologia, 3rd edn. Editora Interciência, Rio de Janeiro

    Google Scholar 

  28. Feijoó CS, Momo FR, Bonetto CA, Tur NM (1996) Factors influencing biomass and nutrient content of the submersed macrophyte Egeria densa Planch. in a pampasic stream. Hydrobiologia 341:21–26. https://doi.org/10.1007/BF00012299

    Article  Google Scholar 

  29. Flora do Brazil 2020 [in construction] (2020) Jardim Botânico do Rio de Janeiro, Rio de Janeiro. https://floradobrasil.jbrj.gov.br/>. Cited 25 Apr 2020

  30. Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, Chichester

    Google Scholar 

  31. Goetz MNB, Dantas ÊW, Barros ICL (2019) Influence of abiotic factors on the composition and abundance of aquatic ferns occurring in the state of Paraíba, Brazil. Aquat Ecol 53:1–11. https://doi.org/10.1007/s10452-019-09708-1

    CAS  Article  Google Scholar 

  32. Golterman HL, Clymo RS, Ohnstad MAM (1978) Methods for physical and chemical analisys of freshwater. Black well Scientific Publications, Oxford

    Google Scholar 

  33. Grimaldo JT, Bini LM, Landeiro V, O’Hare MT, Varandas Martins S, Kennedy MP, Caffrey J, Spink A, Murphy KJ (2016) Spatial and environmental drivers of macrophyte diversity and community composition in temperate and tropical calcareous rivers. Aquat Bot 132:49–61. https://doi.org/10.1016/j.aquabot.2016.04.006

    Article  Google Scholar 

  34. Grimaldo JT, O'Hare MT, Kennedy MP, Davidson TA, Bonilla-Barbosa J, Santamaría-Araúz B, Gettys L, Martins SV, Thomaz SM, Murphy KJ (2017) Environmental drivers of freshwater macrophyte diversity and community composition in calcareous warm-water rivers of America and Africa. Freshw Biol 62:1511–1527. https://doi.org/10.1111/fwb.12962

    CAS  Article  Google Scholar 

  35. Gubiani EA, Thomaz SM, Bini LM, Piana PA (2017) Metapopulation models predict the temporal response of two macrophytes to drought in a subtropical water reservoir. Ecol Eng 100:1–7. https://doi.org/10.1016/j.ecoleng.2016.11.067

    Article  Google Scholar 

  36. Haddad NM (1999) Corridor and distance effects on interpatch movements: a landscape experiment with butterflies. Ecol Appl 9:612–622

    Article  Google Scholar 

  37. Heegaard E, Birks HH, Gibson CE, Smith SJ, Wolfe-Murphy S (2001) Species–environmental relationships of aquatic macrophytes in Northern Ireland. Aquat Bot 70:175–223. https://doi.org/10.1016/S0304-3770(01)00161-9

    Article  Google Scholar 

  38. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  39. Jones JI, Collins AL, Naden PS, Sear DA (2012) The relationship between fine sediment and macrophytes in rivers. River Res Appl 28:1006–1018. https://doi.org/10.1002/rra.1486

    Article  Google Scholar 

  40. Kennedy MP, Lang P, Grimaldo JT, Varandas MS, Bruce A, Moore I, Taubert R, Macleod-Nolan C, McWaters S, Briggs J, Lowe S, Saili K, Sichingabula H, Dallas H, Morrison S, Franceschini C, Willems S, Bottino F, Murphy KJ (2017) Niche-breadth of freshwater macrophytes occurring in tropical southern African rivers predicts species global latitudinal range. Aquat Bot 136:21–30. https://doi.org/10.1016/j.aquabot.2016.09.003

    Article  Google Scholar 

  41. Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  42. Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346. https://doi.org/10.4319/lo.1967.12.2.0343

    CAS  Article  Google Scholar 

  43. Mackereth JFH, Heron J, Talling JF (1978) Water analysis: some revised methods for limnologists. Freshw Biol Ass 36:1–121

    Google Scholar 

  44. McCune B, Mefford MJ (2011) PC-ORD. Multivariate analysis of Ecological Data, Version 6.0 for Windows, Oregon.

  45. Moura-Júnior EG, Abreu MC, Severi W, Lira GAST (2011) O gradiente rio-barragem do reservatório de Sobradinho afeta a composição florística, riqueza e formas biológicas das macrófitas aquáticas? Rodriguésia 62:731–742. https://doi.org/10.1590/S2175-78602011000400003

    Article  Google Scholar 

  46. Moura-Júnior EG, Paiva RMS, Ferreira AC, Pacopahyba LD, Tavares AS, Ferreira FA, Pott A (2015) Updated checklist of aquatic macrophytes from Northern Brazil. Acta Amaz 45:111–132. https://doi.org/10.1590/1809-4392201402662

    Article  Google Scholar 

  47. Moura-Júnior EG, Pott A, Severi W, Zickel CS (2018) Response of aquatic macrophyte biomass to limnological changes under water level fluctuation in tropical reservoirs. Braz J Biol 79:120–126. https://doi.org/10.1590/1519-6984.179656

    Article  PubMed  Google Scholar 

  48. Murphy KJ, Pieterse AH (1990) Present status and prospects of integrated control of aquatic weeds. In: Pieterse AH, Murphy KJ (eds) The ecology and management of nuisance aquatic vegetation. Oxford Publications, New York, pp 222–227

    Google Scholar 

  49. Murphy KJ, Dickinson G, Thomaz SM, Bini LM, Dick K, Greaves K, Kennedy MP, Livingstone S, Mcferran H, Milne JM, Oldroyd J, Wingfield RA (2003) Aquatic plant communities and predictors of diversity in a sub-tropical river floodplain. Aquat Plant 77:257–276. https://doi.org/10.1016/S0304-3770(03)00108-6

    Article  Google Scholar 

  50. Naimi B, Hamm NA, Groen TA, Skidmore AK, Toxopeus AG (2014) Where is positional uncertainty a problem for species distribution modelling. Ecography 37:191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x

    Article  Google Scholar 

  51. Nicol JM, Ganf GG, Pelton GA (2003) Seed banks of a southern Australian wetland: the influence of water regime on the final floristic composition. Plant Ecol 168:191–205. https://doi.org/10.1023/A:1024430919811

    Article  Google Scholar 

  52. O’Hare MT, Gunn IDM, Chapman DS, Dudley BJ, Purse BV (2012) Impacts of space, local environment and habitat connectivity on macrophyte communities in conservation lakes. Divers Distrib 18:603–614. https://doi.org/10.1111/j.1472-4642.2011.00860.x

    Article  Google Scholar 

  53. Oksanen JF, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) Vegan: community ecology package. R package version 2.5–6. https://cran.ism.ac.jp/web/packages/vegan/vegan.pdf. Cited 12 Dec 2019

  54. Pott VJ, Pott A (2000) Plantas aquáticas do Pantanal. Embrapa Comunicação, Brasília

    Google Scholar 

  55. Pulzatto MM, Cunha ER, Dainez-Filho MS, Thomaz SM (2019) Association between the success of an invasive macrophyte, environmental variables and abundance of a competing native macrophyte. Front Plant Sci 10:1–11. https://doi.org/10.3389/fpls.2019.00514

    Article  Google Scholar 

  56. R Core Team (2019) R: a language and environment for statistical computing, 3.6.2.R Foundation for Statistical Computing, Vienna. https://www.R-project.org/.Cited 12 Dec 2019

  57. Rangel TF, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33:46–50. https://doi.org/10.1111/j.1600-0587.2009.06299.x

    Article  Google Scholar 

  58. Rolon AS, Maltchik L (2006) Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of southern Brazil. Hydrobiologia 556:221–231. https://doi.org/10.1007/s10750-005-1364-1

    CAS  Article  Google Scholar 

  59. Rørslett B (1991) Principal determinants of aquatic macrophytes richness in northern European lakes. Aquat Bot 39:173–193. https://doi.org/10.1016/0304-3770(91)90031-Y

    Article  Google Scholar 

  60. Sousa WTZ, Thomaz SM, Murphy KJ, Silveira MJ, Mormul RP (2009) Environmental predictors of the occurrence of exotic Hydrilla verticillata (L.f.) Royle and native Egeria najas Planch. in a sub-tropical river floodplain: the Upper River Paraná Brazil. Hydrobiologia 632:65–78. https://doi.org/10.1007/s10750-009-9828-3

    Article  Google Scholar 

  61. Sousa WTZ, Thomaz SM, Murphy KJ (2010) Response of native Egeria najas Planch. and invasive Hydrilla verticillata (L.f.) Royle to altered hydroecological regime in a subtropical river. Aquat Bot 92:40–48. https://doi.org/10.1016/j.aquabot.2009.10.002

    Article  Google Scholar 

  62. Straškraba M (1990) Limnological particularities of multiple reservoir series: connectivity and the hyporheic corridor. J North Am Benthol Soc 12:48–60

    Google Scholar 

  63. Tanner CC, Clayton JS, Coffey BT (1990) Submerged-vegetation changes in Lake Rotoroa (Hamilton, New Zealand) related to herbicide treatment and invasion by Egeria densa. N Zeal J Mar Fresh 24:45–57. https://doi.org/10.1080/00288330.1990.9516401

    CAS  Article  Google Scholar 

  64. Thomaz SM, Sousa DC, Bini LM (2003) Species richness and beta diversity of aquatic macrophytes in a large subtropical reservoir (Itaipu Reservoir, Brazil): the influence of limnology and morphometry. Hydrobiologia 505:119–128. https://doi.org/10.1023/B:HYDR.0000007300.78143.e1

    Article  Google Scholar 

  65. Thornton KW, Kimmel BL, Payne FE (1990) Reservoir limnology: ecological perspectives. Wiley, New Jersey

    Google Scholar 

  66. Valderrama JC (1981) The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar Chem 10:109–122. https://doi.org/10.1016/0304-4203(81)90027-X

    CAS  Article  Google Scholar 

  67. Van Gerven LP, de Klein JJ, Gerla DJ, Kooi BW, Kuiper JJ, Mooij WM (2015) Competition for light and nutrients in layered communities of aquatic plants. Am Nat 186:72–83. https://doi.org/10.1086/681620

    Article  PubMed  Google Scholar 

  68. Wetzel RG (2001) Limnology, 3rd edn. W.B. Sandres, Philadelphia

    Google Scholar 

  69. Wingfield R, Murphy KJ, Gaywood M (2006) Assessing and predicting the success of Najas flexilis (Willd.) Rostk. & Schimidt, a rare European aquatic macrophyte in relation to lake environmental conditions. Hydrobiologia 570:79–86. https://doi.org/10.1007/s10750-006-0165-5

    CAS  Article  Google Scholar 

  70. Yarrow M, Marin VH, Finlayson M, Tironi A, Delgado LE, Fischer F (2009) The ecology of Egeria densa Planchon (Liliopsida: Alismatales): a wetland ecosystem engineer? Rev Chil Hist Nat 82:299–313. https://doi.org/10.4067/S0716-078X2009000200010

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Companhia Hidro Elétrica do São Francisco – CHESF (CT.E.92.2005.8510.00) and supported by the Fundação Apolônio Salles de Desenvolvimento Educacional - FADURPE. We want to thank Drs. Karine Matos Magalhães and Maria Carolina de Abreu, and MSc Valéria Verônica dos Santos for their contributions in obtaining the occurrence data of species. We thank Dr. Pedro Eisenlohr for their contributions in the data analysis, as well as in the revision of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edson Gomes de Moura-Júnior.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Roger P. MORMUL

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 182 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Moura-Júnior, E.G., Severi, W., Kamino, L.H.Y. et al. To what degree do spatial and limnological predictors explain the occurrence of a submerged macrophyte species in lotic and semi-lotic/lentic environments of a dammed river?. Limnology 22, 101–110 (2021). https://doi.org/10.1007/s10201-020-00638-8

Download citation

Keywords

  • Aquatic plant
  • Plant dispersal
  • MEMs
  • Northeast Brazil