, Volume 19, Issue 3, pp 321–333 | Cite as

Water quality parameters and tipping points of dragonfly diversity and abundance in fishponds

  • Marie Vanacker
  • Alexander Wezel
  • Beat Oertli
  • Joël Robin
Research paper


Fishponds are often enriched with nutrients in order to increase phytoplankton and zooplankton populations to support fish production. This eutrophication often leads to a global decrease of biodiversity. This biodiversity shift may be identified by a tipping point, the value of an environmental parameter above which a significant change of species richness and abundance occurs. A total of 110 eutrophic to highly eutrophic fishponds were studied in two areas in France to investigate parameters governing dragonfly species richness and species abundance by determining tipping points. Parameters investigated were chlorophyll a (CHL), water transparency, total N (TN), total P (TP), aquatic plant richness and coverage, adult dragonfly richness and abundance, and fish harvest. A high species richness of dragonflies was found in fishponds, with a total of 34 species, including six species of conservation concern. Dragonfly richness and abundance was shown to be negatively influenced by higher degrees of eutrophication. A high diversity of dragonflies occurred in the fishponds with CHL concentrations below 127 µg/l, water transparency above 67 cm, TN concentrations below 2.30 mg/l, and a fish harvest smaller than 253 kg/ha. A minimum of 5% of aquatic plant cover and the presence of a minimum 9 aquatic plant species seem to promote the richness and abundance of dragonflies. According to tipping points, 19 dragonfly species could be determined as indicator species for water quality in fishponds.


Eutrophication Fishpond Indicator species Macrophytes Odonata Shallow lake 



This research was funded by the ERA-Net BiodivERsA, with the national funder L’Agence Nationale de la Recherche (ANR) (ANR-12-EBID-0001-01), France, part of the 2012 BiodivERsA call for research proposals. We want to thank Thomas Lhuillery, Mathieu Guérin, and Sylvie Prestoz, ISARA-Lyon, and colleagues from Hepia, Geneva (Véronique Rosset, Sandrine Angélibert, Christiane Ilg, David Leclerc, Valérian Vittet, and Eliane Demierre) for their work in the field and in the laboratory.


  1. Anderson T, Carstensen J, Hernandez-Garcia E, Duarte CM (2009) Ecological thresholds and regime shifts: approaches to identification. Trends Ecol Evol 24:49–57CrossRefGoogle Scholar
  2. Angélibert S, Indermuehle N, Luchier D, Oertli B, Perfetta J (2006) Where hides the aquatic biodiversity of macroinvertebrates in the Canton of Geneva (Switzerland)? Archives des Sciences 59:225–234Google Scholar
  3. Angélibert S, Rosset V, Indermuehle N, Oertli B (2010) The pond biodiversity index ‘IBEM’: a new tool for the rapid assessment of biodiversity in ponds from Switzerland. Part 1. Index development. Limnetica 1:93–104Google Scholar
  4. Arthaud F, Vallod D, Robin J, Wezel A, Bornette G (2013) Short-term succession of aquatic plant species richness along ecosystem productivity and dispersal gradients in shallow lakes. J Veg Sci 24:148–156CrossRefGoogle Scholar
  5. Bachasson B (1991) Mise en valeur des étangs. Lavoisier-Techniques et Documentation, ParisGoogle Scholar
  6. Bernard R, Buczynski P, Tonczyk G (2002) Present state, threats and conservation of dragonflies (Odonata) in Poland. Nat Conserv 59:53–71Google Scholar
  7. Biggs J, Williams P, Whitfield M, Nicolet P, Weatherby A (2005) 15 years of pond assessment in Britain: results and lessons learned from the work of Pond Conservation. Aquat Conserv Mar Freshw Ecosyst 15:693–714CrossRefGoogle Scholar
  8. Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–523CrossRefPubMedGoogle Scholar
  9. Braun-Blanquet J (1932) Plant sociology. The study of plant communities. Hafner, LondonGoogle Scholar
  10. Brönmark C, Hansson L-A (2002) Environmental issues in lakes and ponds: current state and perspectives. Environ Conserv 29:290–306CrossRefGoogle Scholar
  11. Brönmark C, Hansson L-A (2007) The biology of lakes and ponds. Oxford University Press, OxfordGoogle Scholar
  12. Broyer J, Curtet L (2012) Biodiversity and fish farming intensification in French fishpond systems. Hydrobiologia 694:205–218CrossRefGoogle Scholar
  13. Burnham KP, Overton WS (1979) Robust estimation of population size when capture probabilities vary among animals. Ecology 60:927–936CrossRefGoogle Scholar
  14. Caldwell JP, Thorp JH, Jervey TO (1980) Predator–prey relationships among larval dragonflies, salamanders, and frogs. Oecologia 46:285–289CrossRefPubMedGoogle Scholar
  15. Catling PM (2005) A potential for the use of dragonfly (Odonata) diversity as a bioindicator of the efficiency of sewage lagoons. Can Field Nat 119:233–236CrossRefGoogle Scholar
  16. Céréghino R, Biggs J, Oertli B, Declerck S (2008) The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597:1–6CrossRefGoogle Scholar
  17. Chovanec A, Waringer J, Raab R, Laister G (2004) Lateral connectivity of a fragmented large river system: assessment on a macroscale by dragonfly surveys (Insecta: Odonata). Aquat Conserv Mar Freshw Ecosyst 14:163–178CrossRefGoogle Scholar
  18. Convey P (1988) Competition for perches between larval damselflies: the influence of perch use on feeding efficiency, growth rate and predator avoidance. Freshw Biol 19:15–28CrossRefGoogle Scholar
  19. Corbet PS (1980) Biology of Odonata. Annu Rev Entomol 25:189–217CrossRefGoogle Scholar
  20. Corbet PS (1999) Dragonflies: behaviour and ecology of Odonata. Harley Books, ColchesterGoogle Scholar
  21. D’Amico F, Darblade S, Avignon S, Blanc-Manel S, Ormerod SJ (2004) Odonates as indicators of shallow lake restoration by liming: comparing adult and larval responses. Restor Ecol 12:439–446CrossRefGoogle Scholar
  22. de Paiva Silva D, De Marco P, Resende DC (2010) Adult odonate abundance and community assemblage measures as indicators of stream ecological integrity: a case study. Ecol Indic 10:744–752CrossRefGoogle Scholar
  23. Deliry C, Boeglin Y, David G, Juliand P, Krieg-Jacquier R, Ladet A, Souvignet N, Sthème de Jubécourt J, Ulmer A, le groupe Sympetrum (2013) Liste rouge des Odonates en Rhône-Alpes & Dauphiné 2013. Histoires Naturelles 1–55Google Scholar
  24. Dommanget J-L, Prioul B, Gajdos A (2009) Document préparatoire à une Liste Rouge des Odonates de France métropolitaine, complétée par la listes des espèces à suivi prioritaire. Société française d’Odonatologie (SFO), pp 47Google Scholar
  25. Donohue I, Donohue LA, Ní Ainín B, Irvine K (2009) Assessment of eutrophication pressure on lakes using littoral invertebrates. Hydrobiologia 633:105–122CrossRefGoogle Scholar
  26. Dutra S, De Marco P (2015) Bionomic differences in odonates and their influence on the efficiency of indicator species of environmental quality. Ecol Ind 49:132–142CrossRefGoogle Scholar
  27. European Union (2000) Directive 2000/60/EC of the European Parliament and of the council establishing a framework for the community action in the field of water policy. Off J Eur Communities L327:1–73Google Scholar
  28. Goertzen D, Suhling F (2012) Promoting dragonfly diversity in cities: major determinants and implications for urban pond design. J Insect Conserv 17:399–409Google Scholar
  29. Grand D (2010) Leucorrhinia pectoralis (Charpentier, 1825) dans la Dombes (Département de l’Ain): éléments de biologie (Odonata, Anisoptera: Libellulidae). Martinia. Revue scientifique de la Société française d’Odonatologie 26:151–166Google Scholar
  30. Heads PA (1986) The costs of reduced feeding due to predator avoidance: potential effects on growth and fitness in Ischnura elegans larvae (Odonata: Zygoptera). Ecol Entomol 11:369–377CrossRefGoogle Scholar
  31. Henrikson B-I (1988) The absence of antipredator behaviour in the larvae of Leucorrhinia dubia (Odonata) and the consequences for their distribution. Oikos 51:179–183CrossRefGoogle Scholar
  32. Hornung JP, Rice CL (2003) Odonata and wetland quality in southern Alberta, Canada: a preliminary study. Odonatologica 32:119–129Google Scholar
  33. Indermuehle N, Angélibert S, Rosset V, Oertli B (2010) The pond biodiversity index ‘IBEM’: a new tool for the rapid assessment of biodiversity in ponds from Switzerland. Part 2. Method description and examples of application. Limnetica 29:105–120Google Scholar
  34. Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Pedersen LJ, Jensen L (1997) Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342–343:151–164CrossRefGoogle Scholar
  35. Johnson DM (1991) Behavioral ecology of larval dragonflies and damselflies. Trends Ecol Evol 6:8–13CrossRefPubMedGoogle Scholar
  36. Josse J, Husson F (2016) missMDA: a package for handling missing values in multivariate data analysis. J Stat Softw 70(1):1–31CrossRefGoogle Scholar
  37. Kadoya T, Suda S, Washitani I (2004) Dragonfly species richness on man-made ponds: effects of pond size and pond age on newly established assemblages. Ecol Res 19:461–467CrossRefGoogle Scholar
  38. Kalkman VJ, Clausnitzer V, Dijkstra K-DB, Orr AG, Paulson DR, van Tol J (2008) Global diversity of dragonflies (Odonata) in freshwater. Hydrobiologia 595:351–363CrossRefGoogle Scholar
  39. Kalkman VJ, Boudot J-P, Bernard R, Conze K-J, De Knijf G, Dyatlova E, Ferreira S, Jovic M, Ott J, Riservato E et al (2010) European red list of dragonflies. Publications Office of the European Union, LuxembourgGoogle Scholar
  40. Korinek V, Fott J, Fuksa J, Lellak J, Prazakova M (1987) Carp ponds of central Europe. In: Michael RG (ed) Managed aquatic ecosystems, Elsevier Science, Amsterdam, pp 29–62Google Scholar
  41. Leclerc D, Angelibert S, Rosset V, Oertli B (2011) Les Libellules (Odonates) des étangs piscicoles de la Dombes. Martinia 26:98–108Google Scholar
  42. Lemmens P, Mergeay J, De Bie T, Van Wichelen J, De Meester L, Declerck SAJ (2013) How to maximally support local and regional biodiversity in applied conservation? Insights from pond management. PLoS ONE 8:1–13CrossRefGoogle Scholar
  43. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105:1786–1793CrossRefPubMedGoogle Scholar
  44. Lombardo P (1997) Predation by Enallagma nymphs (Odonata, Zygoptera) under different conditions of spatial heterogeneity. Hydrobiologia 356:1–9CrossRefGoogle Scholar
  45. Macagno AL, Gobbi M, Lencioni V (2012) The occurrence of Leucorrhinia pectoralis (Charpentier, 1825) (Odonata, Libellulidae) in Trentino (Eastern Italian Alps). Studi trentini di Scienze naturali 92:33–36Google Scholar
  46. May RM (1977) Threshold and breakpoints in ecosystems with a multiplicity of stable states. Nature 269:471–477CrossRefGoogle Scholar
  47. Monteiro-Júnior CS, Juen L, Hamada N (2014) Effects of urbanization on stream habitats and associated adult dragonfly and damselfly communities in central Brazilian Amazonia. Landsc Urban Plan 127:28–40CrossRefGoogle Scholar
  48. Oertli B (2008) The use of dragonflies in the assessment and monitoring of aquatic habitats. In: Córdoba-Aguilar A (ed) Dragonflies and damselflies: model organisms for ecological and evolutionary research. Oxford University Press, Oxford, pp 79–95CrossRefGoogle Scholar
  49. Oertli B (2010) The local species richness of dragonflies in mountain water bodies: an indicator of climate warming? BioRisk 5:243–251CrossRefGoogle Scholar
  50. Oertli B, Auderset Joye D, Castella E, Juge R, Lachavanne J-B (2000) Diversité biologique et diversité écologique des étangs et petits lacs de Suisse. Swiss Agency for Environment, Forest and Landscape, Laboratory of Ecology and Aquatic Biology, University of Geneva, GenevaGoogle Scholar
  51. Oertli B, Auderset Joye D, Castella E, Juge R, Lehmann A, Lachavanne J-B (2005a) PLOCH: a standardized method for sampling and assessing the biodiversity in ponds. Aquat Conserv Mar Freshw Ecosyst 15:665–679CrossRefGoogle Scholar
  52. Oertli B, Biggs J, Céréghino R, Grillas P, Joly P, Lachavanne J-B (2005b) Conservation and monitoring of pond biodiversity: introduction. Aquat Conserv Mar Freshw Ecosyst 15:535–540CrossRefGoogle Scholar
  53. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R package version 2-0Google Scholar
  54. Ott J, Samways MJ (2010) Effects of climatic changes on Odonata: are the impacts likely to be the same in the northern and southern hemispheres? In: Settele J, Penev L, Georgiev T, Grabaum R, Grobelnik V, Hammen V, Klotz S, Kotarac M, Kühn I (eds) Atlas of biodiversity risk. Pensoft Publishers, Sofia-Moscow, pp 84–85Google Scholar
  55. Pálffy K, Présing M, Vörös L (2013) Diversity patterns of trait-based phytoplankton functional groups in two basins of a large, shallow lake (Lake Balaton, Hungary) with different trophic state. Aquat Ecol 47:195–210CrossRefGoogle Scholar
  56. Parsons TR, Strickland JDH (1963) Discussion of spectrophotometric determination of marine-plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. J Mar Res 21:155–163Google Scholar
  57. Pollard JB, Berrill M (1992) The distribution of dragonfly nymphs across a pH gradient in south-central Ontario lakes. Can J Zool 70:878–885CrossRefGoogle Scholar
  58. Pryke JS, Samways MJ, De Saedeleer K (2015) An ecological network is as good as a major protected area for conserving dragonflies. Biol Conserv 191:537–545CrossRefGoogle Scholar
  59. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  60. Remsburg AJ, Turner MG (2009) Aquatic and terrestrial drivers of dragonfly (Odonata) assemblages within and among north-temperate lakes. J N Am Benthol Soc 28:44–56CrossRefGoogle Scholar
  61. Renner S, Sahlén G, Périco E (2015) Testing dragonflies as species richness indicators in a fragmented subtropical Atlantic forest environment. Neotrop Entomol 45:231–239CrossRefPubMedGoogle Scholar
  62. Robin J, Wezel A, Bornette G, Arthaud F, Angélibert S, Rosset V, Oertli B (2013) Biodiversity in eutrophicated shallow lakes: determination of tipping points and tools for monitoring. Hydrobiologia 723:63–75CrossRefGoogle Scholar
  63. Rosset V, Angélibert S, Arthaud F, Bornette G, Robin J, Wezel A, Vallod D, Oertli B (2014) Is eutrophication really a major impairment for small water body biodiversity? J Appl Ecol 51:415–425CrossRefGoogle Scholar
  64. Ruggiero A, Cereghino R, Figuerola J, Marty P, Angelibert S (2008) Farm ponds make a contribution to the biodiversity of aquatic insects in a French agricultural landscape. CR Biol 331:298–308CrossRefGoogle Scholar
  65. Samways MJ, Steytler NS (1996) Dragonfly (Odonata) distribution patterns in urban and forest landscapes, and recommendations for riparian management. Biol Conserv 78:279–288CrossRefGoogle Scholar
  66. Scheffer M (2004) Ecology of shallow lakes. Springer, DordrechtCrossRefGoogle Scholar
  67. Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279CrossRefPubMedGoogle Scholar
  68. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596CrossRefPubMedGoogle Scholar
  69. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59CrossRefPubMedGoogle Scholar
  70. Schindler M, Fesl C, Chovanec A (2003) Dragonfly associations (Insecta: Odonata) in relation to habitat variables: a multivariate approach. Hydrobiologia 497:169–180CrossRefGoogle Scholar
  71. Stoks R, Córdoba-Aguilar A (2012) Evolutionary ecology of Odonata: a complex life cycle perspective. Annu Rev Entomol 57:249–265CrossRefPubMedGoogle Scholar
  72. Vallod D, Sarrazin B (2010) Caractérisation de l’effluent de vidange d’un étang de pisciculture extensive. Hydrol Sci J 55:394–402CrossRefGoogle Scholar
  73. Vanacker M, Wezel A, Payet V, Robin J (2015) Determining tipping points in aquatic ecosystems: the case of biodiversity and chlorophyll α relations in fish pond systems. Ecol Indic 52:184–193CrossRefGoogle Scholar
  74. Vanacker M, Wezel A, Arthaud F, Guerin M, Robin J (2016) Determination of tipping points for aquatic plants and water quality parameters in fish pond systems: a multi-year approach. Ecol Indic 64:39–48CrossRefGoogle Scholar
  75. Wezel A, Arthaud F, Dufloux C, Renoud F, Vallod D, Robin J, Sarrazin B (2013a) Varied impact of land use on water and sediment parameters in fish ponds of the Dombes agro-ecosystem, France. Hydrol Sci J 58:1–18CrossRefGoogle Scholar
  76. Wezel A, Robin J, Guerin M, Arthaud F, Vallod D (2013b) Management effects on water quality, sediments and fish production in extensive fish ponds in the Dombes region, France. Limnologica 43:210–218CrossRefGoogle Scholar
  77. Wezel A, Oertli B, Rosset V, Arthaud F, Leroy B, Smith R, Angélibert S, Bornette G, Vallod D, Robin J (2014) Biodiversity patterns of nutrient-rich fish ponds and implications for conservation. Limnology 15:213–223CrossRefGoogle Scholar
  78. Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolat P, Sear D (2003) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115:329–341CrossRefGoogle Scholar
  79. Wittwer T, Sahlén G, Suhling F (2010) Does one community shape the other? Dragonflies and fish in Swedish lakes. Insect Conserv Divers 3:124–133CrossRefGoogle Scholar
  80. Witzig JF, Huner JV, Avault JW Jr (1986) Predation by dragonfly naiads Anax junius on young crawfish Procambarus clarkii. J World Aquac Soc 17:58–63CrossRefGoogle Scholar
  81. Wohlfahrt B, Mikolajewski DJ, Joop G, Suhling F (2006) Are behavioural traits in prey sensitive to the risk imposed by predatory fish? Freshw Biol 51:76–84CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Limnology 2018

Authors and Affiliations

  1. 1.Department of Agroecology and EnvironmentISARA LyonLyonFrance
  2. 2.Hepia Geneva Technology, Architecture and LandscapeUniversity of Applied Sciences Western SwitzerlandJussySwitzerland

Personalised recommendations