Skip to main content
Log in

Effect of a total solar eclipse on the surface crowding of zooplankton in a freshwater lake ecosystem

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

Zooplankton surface crowding in a freshwater lake ecosystem during a total solar eclipse (maximum eclipse at 06:28:43 Indian Standard Time, 22 July 2009) was studied in relation to ambient physicochemical conditions and compared with the crowding that occurred during pre- and post-eclipse days. Rapid light attenuation on the eclipse day led to changes in zooplankton surface crowding, which manifested as alterations to community structure and statistical parameters. Zooplankton diversity and density varied depending on the day (either the pre-eclipse day, the eclipse day, or the post-eclipse day) and the sampling time considered. A total of 20 zooplankton species were recorded during the study. On the day of the eclipse, the highest zooplankton density in the surface water was recorded just after the end of totality at 06:30 IST. The populations of two adult cladoceran species (Alona rectangula rectangula and Chydorus sphaericus) were particularly prominent in the zooplankton, whereas rotifers were almost absent from the surface water during the eclipse. Rather than decreasing, the primary production of the phytoplankton increased on the day of the TSE compared to that seen on the control days. Comparatively high Lindeman’s efficiency values were observed during the eclipse, indicating particularly efficient utilization of photons in photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adhikari S, Roy Goswami A, Mukhopadhyay SK (2017) Diversity of zooplankton in municipal wastewater-contaminated urban pond ecosystems of the lower Gangetic plains. Turk J Zool 41(3):464–475

    Article  Google Scholar 

  • Ahlstorm EH (1940) Revision of Rotatoria, genus Brachionus and Platyias with descriptions of one new species and two new varieties. Bull Am Mus Nat Hist 77:143–184

    Google Scholar 

  • Armengol X, Miracle MR (2000) Diel vertical movements of zooplankton in Lake La Cruz (Cuenca, Spain). J Plank Res 22(9):1683–1703

  • Babu RS (1983) Impact of solar eclipse on some physico-chemical factors and plankton density in a freshwater pond. Geobios 10(6):260–263

    Google Scholar 

  • Backus RH, Clark RC, Wing AS (1965) Behavior of certain organisms during the solar eclipse of July 20, 1963. Nature 205:989–991

    Article  Google Scholar 

  • Battish SK (1992) Freshwater zooplankton of India. Oxford & IBH, Delhi

  • Bezerra-Neto JF, Mello NAST, Maia-Barbosa PM, Pinto-Coelho RM (2009) The role of predation in the diel vertical migration of zooplankton in two tropical freshwaters ecosystems. Acta Limnol Bras 21(1):45–56

    Google Scholar 

  • Braioni MG, Gelmini D (1983) Rotiferi Monogononti (Rotatoria: Monogononta). Guide per il reconoscimento delle specie animali delle acque interne italiane. Consiglio Nazionaliedelle Ricerche, Verona, p 181

  • Brandl Z (2005) Freshwater copepods and rotifers: predators and their prey. Hydrobiologia 546:475–489

    Article  Google Scholar 

  • Bright T, Ferrari F, Martin D, Franceschini GA (1972) Effects of a total solar eclipse on the vertical distribution of certain oceanic zooplankters. Limnol Oceanogr 17:296–300

    Article  Google Scholar 

  • Chakrabarti SK, Pal S, Sasmal S, Mondal SK, Ray S, Basak T, Maji SK, Khadka B, Bhowmick D, Chowdhury AK (2012) VLF campaign during the total eclipse of July 22nd 2009: observational results and interpretations. J Atmos Sol Terr Phys 86:65–70

    Article  Google Scholar 

  • Chen G, Zhao Z, Zhou C, Yang G, Zhang Y (2010) Solar eclipse effects of 22 July 2009 on sporadic-E. Ann Geophys 28:353–357

    Article  CAS  Google Scholar 

  • Connell AD (1978) Reversed vertical migration of planktonic crustaceans in a eutrophic lake of high pH. J Limnol Soc S Afr 4(2):101–104

    Google Scholar 

  • Das D, Sen A, Mitra P (2013) Major fauna of Rasik Beel Wetland Complex (WB). Records of the Zoological Survey of India occasional paper no. 343. Zoological Survey of India, Kolkata

  • De Sarkar P, Naaz S, Mukhopadhyay SK (2004) Diel activity patterns within zooplanktonic community in relation to physico-chemical factors. J Environ Sociobiol 1(1&2):1–12

    Google Scholar 

  • Dobe KA (2014) Diel vertical migration strategies of zooplankton in oligotrophic Russell Pond, New Hampshire. Honors thesis paper 196. University of New Hampshire, Durham

  • Dodson S (1990) Predicting diel vertical migration of zooplankton. Limnol Oceanogr 35:1195–1200

    Article  Google Scholar 

  • Dumont HJ (1972) A competition-based approach of the reverse vertical migration in zooplankton and its implications, chiefly based on a study of the interactions of the rotifer Asplanchna priodonta (Gosse) with several Crustacea Entomostraca. Int Rev Gesamten Hydrobiol 57:1–38

    Article  Google Scholar 

  • Duval WS, Geen GH (1976) Diel feeding and respiration rhythms in zooplankton. Limnol Oceanogr 21:823–829

    Article  Google Scholar 

  • Eaton AD, Clesceri LS, Greenberg AE (2005) Standard methods of the examination of water and wastewater, 21st edn. APHA, Washington, DC

    Google Scholar 

  • Economou G, Christou ED, Giannakourou A, Gerasopoulos E, Georgopoulos D, Kotoulas V, Lyra D, Tsakalis N, Tzortziou M, Vahamidis P, Papathanassiou E, Karamanos A (2008) Eclipse effects on field crops and marine zooplankton: the 29 March 2006 total solar eclipse. Atmos Chem Phys 8:4665–4676

    Article  CAS  Google Scholar 

  • Edmondson WT (1992) Fresh-water biology, 2nd edn. International Books & Periodicals Supply Service, Delhi

    Google Scholar 

  • Forward RB (1988) Diel vertical migration: zooplankton photobiology and behavior. Oceanogr Mar Biol Annu Rev 26:361–393

    Google Scholar 

  • Gaarder T, Gran HH (1927) Investigations of the production of plankton in the Oslo Fjord. Rapp Proc Verb Cons Int Explor Mer 42:l–48

    Google Scholar 

  • Gilbert J, Hampton SE (2001) Diel vertical migrations of zooplankton in a shallow, fishless pond: a possible avoidance-response cascade induced by notonectids. Freshw Biol 46:611–621

    Article  Google Scholar 

  • Goldman CR (1968) The use of absolute activity for eliminating serious errors in the measurement of primary productivity with C14. ICES J Mar Sci 32(2):172–179

    Article  CAS  Google Scholar 

  • Gophen M (1979) Bathymetrical distribution and diurnal migrations of zooplankton in Lake Kinneret (Israel) with particular emphasis on Mesocyclops leuckarti (Claus). Hydrobiologia 64(3):199–208

  • Goswami SC (2004) Zooplankton methodology, collection and identification—a field manual. National Institute of Oceanography, Dona Paula, p 26

  • Häfker NS, Meyer B, Last KS, Pond DW, Hüppe L, Teschke M (2017) Circadian clock involvement in zooplankton diel vertical migration. Curr Biol 27(14):2194–2201

    Article  PubMed  Google Scholar 

  • Haney JF (1988) Diel patterns of zooplankton behavior. Bull Mar Sci 43(3):583–603

    Google Scholar 

  • Harris RP, Wiebe PH, Lenz J, Skjoldal HR, Huntley M (eds) (2000) ICES zooplankton methodology manual. Academic, London

  • Ismail AH, Adnan AAM (2016) Zooplankton composition and abundance as indicators of eutrophication in two small man-made lakes. Trop Life Sci Res 27(supp1):31–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Jana BB, Chakrabarti L (1999) Dark induced reproductive inhibition of Daphnia carinata. Limnologica 29:191–194

    Article  Google Scholar 

  • Jana BB, De UK (1981) Measurements of primary production on phytoplankton in the aquatic environment, during the solar eclipse. Acta Hydrochim Hydrobiol 9(5):599–602

    Article  Google Scholar 

  • Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23:187–200

    Article  Google Scholar 

  • Kamble VB, Ranade AC (2009) Total solar eclipse of 22 July 2009. Dream 2047. Vigyan Prasar, New Delhi

  • Kasich JR, Taylor M, Nally SJ (2012) Inland lake sampling procedures manual. Division of Surface Water, Columbus

  • Khan MA, Fagbemi T, Ejike C (1983) Diurnal variations of physico-chemical factors and planktonic organisms in Jos Plateau (West Africa) water reservoir. Jpn J Limnol 44(1):65–71

    Article  CAS  Google Scholar 

  • Kumar SS, Rengaiyan R (2011) Influence of solar eclipse on seawater. Nat Sci 3(1):69–74

    CAS  Google Scholar 

  • Lampert W (1989) The adaptive significance of diel vertical migration of zooplankton. Funct Ecol 3(1):21–27

    Article  Google Scholar 

  • Lampert W (1993) Ultimate causes of diel vertical migration of zooplankton: new evidence for the predator-avoidance hypothesis. Arch Hydrobiol Beih Ergebn Limnol 39:79–88

    Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129(2):271–280

    Article  PubMed  Google Scholar 

  • Ma Z, Li W, Shen A, Gao K (2013) Behavioral responses of zooplankton to solar radiation changes: in situ evidence. Hydrobiologia 711:155–163

    Article  Google Scholar 

  • Mandal B, Mukherjee A (2011) Diversity and diel variation of zooplankton in two ponds at Barrackpore, West Bengal. Proc Zool Soc 64(2):132–136

    Article  Google Scholar 

  • Manuel JL, O’Dor RK (1997) Vertical migration for horizontal transport while avoiding predators: I. A tidal/diel model. J Plank Res 19(12):1929–1947

    Article  Google Scholar 

  • Marcé R, Comerma M, García JC, Gomà J, Armengol J (2005) The zooplankton community in a small, hypertrophic Mediterranean reservoir (Foix reservoir, NE Spain). Limnetica 24(3–4):275–294

    Google Scholar 

  • Marra J (1978) Effect of short-term variations in light intensity on photosynthesis of a marine phytoplankter: a laboratory simulation study. Mar Biol 46:191–202

    Article  CAS  Google Scholar 

  • Mattson MD (2009) Inorganic chemicals: cycles and dynamics. In: Likens GE (ed) Encyclopaedia of inland waters, vol 2. Academic, New York, p 857

  • Michael RG, Sharma BK (1988) Fauna of India and adjacent countries: Indian Cladocera (Crustacea: Branchiopoda: Cladocera). Zoological Survey of India, Calcutta

    Google Scholar 

  • Mukhopadhyay SK, Biswas S, Chatterjee A (1997) Effects of solar eclipse on zooplanktonic diel periodicity in freshwater ponds. Kodikanal Obs Bull 13:245–249

  • Mukhopadhyay SK, Chattopadhyay B, Roy Goswami A, Chatterjee A (2007) Spatial variations in zooplankton diversity in waters contaminated with composite effluents. J Limnol 66(2):97–106

    Article  Google Scholar 

  • Nandini S, Sarma SSS (2005) Life history characteristics of Asplanchnopus multiceps (Rotifera) fed rotifer and cladoceran prey. Hydrobiologia 546:491–501

    Article  Google Scholar 

  • Odum EP (1971) Fundamentals of ecology, 3rd edn. WB Saunders Co., Philadelphia

  • Pejler B (1962) On the taxonomy and ecology of benthic and periphytic Rotatoria. Investigations in northern Swedish Lapland. Zool Bidr Uppsala 33:327–422

    Google Scholar 

  • Pejler B, Berzins B (1994) On the ecology of Lecane (Rotifera). Hydrobiologia 273:77–80

    Article  Google Scholar 

  • Petersod DH, Perryb MJ, Bencala KE, Talbot MC (1987) Phytoplankton productivity in relation to light intensity: a simple equation. Estuar Coast Shelf Sci 24:813–832

    Article  Google Scholar 

  • Pratiwi NTM, Zulmi R, Mulyawati D, Sulaiman GSA (2017) The existence of phytoplankton and zooplankton during solar eclipse in a single spot of Pramuka Island waters, Seribu Islands. IOP Conf Ser Earth Environ Sci 54(1):9

    Google Scholar 

  • Ramkumar B, Chandran P (2011) Effect of radiation on bacterial population during annular solar eclipse. J Pure Appl Microbiol 5(1):137–141

    Google Scholar 

  • Richard SS, Alan TH, Danny LK, Steven GP (1996) Climatic forcing on zooplankton richness in lakes of the northeastern United States. Limnol Oceanogr 41:1093–1101

    Article  Google Scholar 

  • Ringelberg J (1991) A mechanism of predator-mediated induction of diel vertical migration of Daphnia hyalina. J Plank Res 13:83–89

    Article  Google Scholar 

  • Ringelberg J (2010) Diel vertical migration of zooplankton in lakes and oceans: causal explanations and adaptive significances. Springer, New York (e-ISBN 978-90-481-3093-1)

  • Ringelberg J, Flik BJG (1994) Increased phototaxis in the field leads to enhanced diel vertical migration. Limnol Oceanogr 39:1855–1864

    Article  Google Scholar 

  • Rinke K, Petzoldt T (2008) Individual based simulation model of diel vertical migration of Daphnia: a synthesis of proximate and ultimate factors. Limnologica 38:269–285

  • Ruttner-Kolisko A (1974) Plankton rotifers. Biology and taxonomy. Die Binnengewasser 26(1):146 (DM46.80)

    Google Scholar 

  • Schoeneck LJ, Williamson CE, Stoeckel ME (1990) Diel periodicity and selectivity in the feeding rate of the predatory copepod Mesocyclops edax. J Plank Res 12:29–40

    Article  Google Scholar 

  • Schwartz M (1957) Quantum yield determinations of photosynthetic reactions. Methods Enzymol 24:139–146

  • Segers H (2008) Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595:49–59

    Article  Google Scholar 

  • Sharma BK (1979a) Rotifers of West Bengal III. Hydrobiologia 64:239–250

    Article  Google Scholar 

  • Sharma BK (1979b) Rotifers of West Bengal IV. Hydrobiologia 65:39–47

    Article  Google Scholar 

  • Sharma BK (1983) The Indian species of the genus Brachionus (Eurotatoria: Monogononta: Brachionidae). Hydrobiologia 104:31–39

    Article  Google Scholar 

  • Sharma BK (1992) Systematics, distribution and ecology of fresh water rotifer of West Bengal. In: Mishra SR, Saksena DN (eds) Aquatic ecology. Asish, Delhi, pp 231–237

  • Sherman K, Honey KA (1970) Vertical movements of zooplankton during a solar eclipse. Nature 227:1156–1158

    Article  CAS  PubMed  Google Scholar 

  • Skud EB (1967) Responses of marine organisms during the solar eclipse of July 1963. Fish Bull US Fish Wild Serv 66:259–271

    Google Scholar 

  • Smirnov NN (2014) Physiology of the Cladocera. Academic, New York, pp 181–186

  • Smith FE, Baylor FR (1953) Colour responses in cladocera and their ecological significance. Am Nat 87:49–55

    Article  Google Scholar 

  • Stearns SC (1975) Light responses of Daphnia pulex. Limnol Oceanogr 20(4):564–570

    Article  Google Scholar 

  • Steedman HF (1976) Zooplankton fixation and preservation. UNESCO, Paris, p 336

  • Steppe K, Lemeur R, Samson R (2002) Sap flow dynamics of a beech tree during the solar eclipse of 11 August 1999. Agric For Meteorol 112(3–4):139–140

    Article  Google Scholar 

  • Talling JF, Lamoalle J (1998) Ecological dynamics of tropical inland waters. Cambridge University Press, Cambridge

    Google Scholar 

  • ter Braak CJF (1994) Canonical community ordination. Part I: basic theory and linear methods. Ecoscience 1(2):127–140

  • ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317

    Article  Google Scholar 

  • ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic, New York

  • Wurts WA, Durborow RM (1992) Interactions of pH, carbon dioxide, alkalinity and hardness in fish ponds. Southern Regional Aquaculture Center (SRAC) publication no. 464. SRAC, Stoneville, pp 1–4

Download references

Acknowledgements

The authors are grateful to the Director, Indian Institute of Astrophysics, Bangalore for sanctioning a travel grant for field study. We are also thankful for and acknowledge the help and cooperation of Mr. Asitava Chatterjee, ADFO, Coochbehar Forest Division, Govt. of West Bengal and Dr. Sudin Pal, Prof. D.S. Kothari Postdoctoral Fellow, Jadavpur University, Kolkata. The authors are grateful to the Principal, Government College of Engineering and Leather Technology (GCELT), Kolkata and Dr. Anjan Biswas, Associate Professor, GCELT for their cooperation and necessary infrastructural support. SKM thanks the UGC for awarding him an Emeritus Fellowship, which aided the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuvadip Adhikari.

Additional information

Handling Editor: Giri Kattel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, S., Goswami, A.R., Roy, U.S. et al. Effect of a total solar eclipse on the surface crowding of zooplankton in a freshwater lake ecosystem. Limnology 19, 253–270 (2018). https://doi.org/10.1007/s10201-018-0540-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-018-0540-8

Keywords

Navigation