Skip to main content

Fungal community structure at pelagic and littoral sites in Lake Biwa determined with high-throughput sequencing

Abstract

Fungi may play an important role in material cycling in lakes and oceans; however, only limited information is available on fungal community structure, especially in large lakes such as Lake Biwa. In this study, whole fungal communities were determined seasonally and spatially using a high-throughput sequencing technique. Water samples were collected from the epilimnion, 0–20 m depth, with a Van Dorn sampler at a pelagic site and from the surface at a littoral site in the north basin of Lake Biwa. All pelagic depth samples were combined into one sample. Sampling occurred on 24 April, 22 May, 10 July, and 16 September 2015. DNA was extracted from filtered samples. Metabarcoding analysis targeting fungi-specific internal transcribed spacer 2 regions was performed using an Illumina MiSeq platform. Epilimnetic fungal communities showed high diversity, with 479 operational taxonomic units (OTUs). The OTUs included 122 belonging to the phylum Ascomycota, 127 to Basidiomycota, 38 to Zygomycota, 45 to Chytridiomycota, 2 to Glomeromycota, and 145 were unclassified fungi. Fungal community structures varied seasonally and spatially. Few of the fungal OTUs overlapped between seasons and sites, and specific communities of fungi were detected on each sampling occasion. Results indicated that spatio-temporal variations in fungal communities were high and may be influenced by both internal factors and external factors, such as terrestrial inputs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Amend A (2014) From dandruff to deep-sea vents: Malassezia-like fungi are ecologically hyper-diverse. PLoS Pathog 10:e1004277

  2. Anne KK, Romano KM, Remmy WK, Edward NK, Huxley MM, Hamadi IB (2016) Diversity of fungi in sediments and water sampled from the hot springs of Lake Magadi and Little Magadi in Kenya. Afr J Microbiol Res 10:330–338

    Article  Google Scholar 

  3. Bärlocher F (2016) Aquatic hyphomycetes in a changing environment. Fungal Ecol 19:14–27

    Article  Google Scholar 

  4. Bass D, Howe A, Brown AN, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B Biol Sci 274:3069–3077

    CAS  Article  Google Scholar 

  5. Brandao LR, Libkind D, Vaz AB, Espirito Santo LC, Moline M, de Garcia V, van Broock M, Rosa CA (2011) Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 76:1–13

    CAS  Article  PubMed  Google Scholar 

  6. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  8. Chauvet E, Suberkropp K (1998) Temperature and sporulation of aquatic hyphomycetes. Appl Environ Microbiol 64:1522–1525

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Comic L, Rankovic B, Novevska V, Ostojic A (2010) Diversity and dynamics of the fungal community in Lake Ohrid. Aquat Biol 9:169–176

    Article  Google Scholar 

  10. Dangles O, Gessner MO, Guérold F, Chauvet E (2004) Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. J Appl Ecol 41:365–378

    CAS  Article  Google Scholar 

  11. Dudhagara P, Ghelani A, Bhatt S (2015) Structural characterization of mycobiome from the metagenome of Lonar Lake sediment using next generation sequencing. Indian J Sci 12:11–16

    Google Scholar 

  12. Frenken T, Alacid E, Berger SA, Bourne EC, Gerphagnon M, Grossart HP, Gsell AS, Ibelings BW, Kagami M, Küpper FC (2017) Integrating chytrid fungal parasites into plankton ecology. Research gaps and needs. Environ Microbiol 19:3802–3822. https://doi.org/10.1111/1462-2920.13827

  13. Gasith A, Hasler AD (1976) Airbone litterfall as a source of organic matter in lakes. Limnol Oceanogr 21:253–258

    Article  Google Scholar 

  14. Gessner M, Gulis V, Kuehn K, Chauvet E, Suberkropp K (2007) The Mycota: microbial and environmental relationships. In: Kubicek CP, DruzhininaI S (eds) Fungal decomposers of plant litter in aquatic ecosystems, vol 4. Springer, Berlin, pp 301–324

    Google Scholar 

  15. Goh T, Hyde K (1996) Biodiversity of freshwater fungi. J Ind Microbiol 17:328–345

    CAS  Article  Google Scholar 

  16. Grossart HP, Rojas-Jimenez K (2016) Aquatic fungi: targeting the forgotten in microbial ecology. Curr Opin Microbiol 31:140–145

    Article  PubMed  Google Scholar 

  17. Grossart HP, Wurzbacher C, James TY, Kagami M (2016) Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecol 19:28–38

    Article  Google Scholar 

  18. Gulis V, Suberkropp K (2003) Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Microb Ecol 45:11–19

    CAS  Article  PubMed  Google Scholar 

  19. Güsewell S, Gessner MO (2009) N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23:211–219

    Article  Google Scholar 

  20. Gutiérrez MH, Galand PE, Moffat C, Pantoja S (2015) Melting glacier impacts community structure of Bacteria, Archaea and Fungi in a Chilean Patagonia fjord. Environ Microbiol 17:3882–3897

    Article  PubMed  Google Scholar 

  21. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  22. Hu DM, Liu F, Cai L (2013) Biodiversity of aquatic fungi in China. Mycology 4:125–168

    Article  Google Scholar 

  23. Hyde KD, Fryar S, Tian Q, Bahkali AH, Xu J (2015) Lignicolous freshwater fungi along a north–south latitudinal gradient in the Asian/Australian region; can we predict the impact of global warming on biodiversity and function? Fungal Ecol 19:190–200

    Article  Google Scholar 

  24. Ihrmark K, Bödeker IT, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE (2012) New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677

  25. Ishida S, Nozaki D, Grossart HP, Kagami M (2015) Novel basal, fungal lineages from freshwater phytoplankton and lake samples. Env Microbiol Rep 7:435–441

    Article  Google Scholar 

  26. Jobard M, Rasconi S, Sime-Ngando T (2010) Diversity and functions of microscopic fungi: a missing component in pelagic food webs. Aquat Sci 72:255–268

    CAS  Article  Google Scholar 

  27. Johnson PT, Longcore JE, Stanton DE, Carnegie RB, Shields JD, Preu ER (2006) Chytrid infections of Daphnia pulicaria: development, ecology, pathology and phylogeny of Polycaryum laeve. Freshwater Biol 51:634–648

    Article  Google Scholar 

  28. Jones EG, Pang KL (2012) Marine fungi: and fungal-like organisms. Walter de Gruyter, Berlin

    Book  Google Scholar 

  29. Jones MD, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203

    CAS  Article  PubMed  Google Scholar 

  30. Kagami M, Gurung TB, Yoshida T, Urabe J (2006) To sink or to be lysed? Contrasting fate of two large phytoplankton species in Lake Biwa. Limnol Oceanogr 51:2775–2786

    Article  Google Scholar 

  31. Kagami M, Bruin A, Ibelings BW, Van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129

    Article  Google Scholar 

  32. Kagami M, Amano Y, Ishii N (2012) Community structure of planktonic fungi and the impact of parasitic chytrids on phytoplankton in Lake Inba, Japan. Microb Ecol 63:358–368

    Article  PubMed  Google Scholar 

  33. Kagami M, Miki T, Takimoto G (2014) Mycoloop: chytrids in aquatic food webs. Front Microbiol 5:166

    Article  PubMed  PubMed Central  Google Scholar 

  34. Khomich M, Davey ML, Kauserud H, Rasconi S, Andersen T (2017) Fungal communities in Scandinavian lakes along a longitudinal gradient. Fungal Ecol 27:36–46

    Article  Google Scholar 

  35. Lentini V, Gugliandolo C, Bunk B, Overmann J, Maugeri TL (2014) Diversity of prokaryotic community at a shallow marine hydrothermal site elucidated by Illumina sequencing technology. Curr Microbiol 69:457–466

    CAS  Article  PubMed  Google Scholar 

  36. Livermore JA, Mattes TE (2013) Phylogenetic detection of novel Cryptomycota in an Iowa (United States) aquifer and from previously collected marine and freshwater targeted high-throughput sequencing sets. Environ Microbiol 15:2333–2341

    CAS  Article  PubMed  Google Scholar 

  37. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Monchy M, Sanciu G, Jobard M, Rasconi S, Gerphagnon M, Chabé M, Cian A, Meloni D, Niquil N, Christaki U, Viscogliosi E, Sime-Ngando T (2011) Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ Microbiol 13:1433–1453

    Article  PubMed  Google Scholar 

  39. Mueller GM, Schmit JP (2007) Fungal biodiversity: what do we know? What can we predict? Biodivers Conserv 16:1–5

    Article  Google Scholar 

  40. Mueller GM, Foster MS, Bills GF (2011) Biodiversity of fungi: inventory and monitoring methods. Academic, New York

    Google Scholar 

  41. Panzer K, Yilmaz P, Wei M, Reich L, Richter M, Wiese J, Schmaljohann R, Labes A, Imhoff JF, Glöckner FO (2015) Identification of habitat-specific biomes of aquatic fungal communities using a comprehensive nearly full-length 18S rRNA dataset enriched with contextual data. PLoS One 10:e0134377

    Article  PubMed  PubMed Central  Google Scholar 

  42. Raja HA, Tanaka K, Hirayama K, Shearer CA (2011) Freshwater ascomycetes: two new species of Lindgomyces (Lindgomycetaceae, Pleosporales, Dothideomycetes) from Japan and USA. Mycologia 103:1421–1432

    Article  PubMed  Google Scholar 

  43. Richards TA, Jones MD, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522

    Article  Google Scholar 

  44. Roa JJ, Virella CR, Cafaro MJ (2009) First survey of arthropod gut fungi and associates from Vieques, Puerto Rico. Mycologia 101:896–903

    Article  Google Scholar 

  45. Schmit JP, Mueller GM (2006) An estimate of the lower limit of global fungal diversity. Biodivers Conserv 16:99–111

    Article  Google Scholar 

  46. Shannon CE (2001) A mathematical theory of communication. SIGMOBILE Mob Comput Commun Rev 5:3–55

    Article  Google Scholar 

  47. Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H (2006) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67

    Article  Google Scholar 

  48. Shearer CA, Raja HA, Miller AN, Nelson P, Tanaka K, Hirayama K, Marvanova L, Hyde KD, Zhang Y (2009) The molecular phylogeny of freshwater Dothideomycetes. Stud Mycol 64:145–153

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Staley C, Unno T, Gould TJ, Jarvis B, Phillips J, Cotner JB, Sadowsky MJ (2013) Application of Illumina next-generation sequencing to characterize the bacterial community of the Upper Mississippi River. J Appl Microbiol 115:1147–1158

    CAS  Article  PubMed  Google Scholar 

  50. Su H, Hyde KD, Maharachchikumbura SSN, Ariyawansa HA, Luo Z, Promputtha I, Tian Q, Lin C, Shang Q, Zhao Y, Chai H, Liu X, Bahkali AH, Bhat JD, McKenzie EHC, Zhou D (2016) The families Distoseptisporaceae fam. nov., Kirschsteiniotheliaceae, Sporormiaceae and Torulaceae, with new species from freshwater in Yunnan Province, China. Fungal Divers 80:375–409

  51. Tabata R, Kakioka R, Tominaga K, Komiya T, Watanabe K (2016) Phylogeny and historical demography of endemic fishes in Lake Biwa: the ancient lake as a promoter of evolution and diversification of freshwater fishes in western Japan. Ecol Evol 6:2601–2623

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tsugeki N, Oda H, Urabe J (2003) Fluctuation of the zooplankton community in Lake Biwa during the 20th century: a paleolimnological analysis. Limnology 4:101–107

    CAS  Article  Google Scholar 

  53. Tsui CK, Baschien C, Goh TK (2016) Biology and ecology of freshwater fungi. In: Li DW (ed) Biology of microfungi. Springer International, Basel, pp 285–313

  54. Van den Wyngaert S, Seto K, Rojas-Jimenez K, Kagami M, Grossart HP (2017) A new parasitic chytrid, Staurastromyces oculus (Rhizophydiales, Staurastromycetaceae fam. nov.), infecting the freshwater desmid Staurastrum sp. Protist 168:392–407. https://doi.org/10.1016/j.protis.2017.05.001

  55. Van Wyk D, Bezuidenhout C, Rhode O (2012) Diversity and characteristics of yeasts from water sources in the North West Province, South Africa. Water Sci Technol 12:422–430

    Google Scholar 

  56. Vijaykrishna D, Hyde KD (2006) Inter-and intra stream variation of lignicolous freshwater fungi in tropical Australia. Fungal Divers 21:203–224

    Google Scholar 

  57. Webster J (1975) Further studies of sporulation of aquatic hyphomycetes in relation to aeration. Trans Br Mycol Soc 64:117–127

    Google Scholar 

  58. Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Article  Google Scholar 

  59. Wurzbacher C, Bärlocher F, Grossart HP (2010) Fungi in lake ecosystems. Aquat Microb Ecol 59:125–149

    Article  Google Scholar 

  60. Wurzbacher C, Rősel S, Rychła A, Grossart HP (2014) Importance of saprotrophic freshwater fungi for pollen degradation. PLoS One 9:1–12

    Article  Google Scholar 

  61. Wurzbacher C, Warthmann N, Bourne E, Attermeyer K, Allgaier M, Powell JR, Detering H, Mbedi S, Grossart HP, Monaghan M (2016) High habitat-specificity in fungal communities in oligo-mesotrophic, temperate Lake Stechlin (North-East Germany). MycoKeys 16:17–44

    Article  Google Scholar 

  62. Xu W, Shi L, Chan O, Li J, Casper P, Zou X (2013) Assessing the effect of litter species on the dynamic of bacterial and fungal communities during leaf decomposition in microcosm by molecular techniques. PLoS One 8:e84613

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhang H, Huang T, Chen S (2015a) Ignored sediment fungal populations in water supply reservoirs are revealed by quantitative PCR and 454 pyrosequencing. BMC Microbiol 15:44

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhang T, Wang NF, Zhang YQ, Liu HY, Yu LY (2015b) Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic). Sci Rep 5:14524

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Captain Bun-ichiro Kaigai for providing help with sample collection using the research vessel Hassaka. We also thank the members of our laboratories for supporting all of the laboratory work. This study was supported by a Grant-in-Aid for Scientific Research (B) (25281012) from the Ministry of Education to MK and a Chinese Scholarship Council Grant to PS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Syuhei Ban.

Additional information

Handling Editor: Toshifumi Minamoto.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, P., Tanabe, S., Yi, R. et al. Fungal community structure at pelagic and littoral sites in Lake Biwa determined with high-throughput sequencing. Limnology 19, 241–251 (2018). https://doi.org/10.1007/s10201-017-0537-8

Download citation

Keywords

  • Fungal communities
  • High-throughput sequencing
  • Lake Biwa
  • Spatio-temporal variation