, Volume 15, Issue 3, pp 213–223 | Cite as

Biodiversity patterns of nutrient-rich fish ponds and implications for conservation

  • A. WezelEmail author
  • B. Oertli
  • V. Rosset
  • F. Arthaud
  • B. Leroy
  • R. Smith
  • S. Angélibert
  • G. Bornette
  • D. Vallod
  • J. Robin
Special Feature Freshwater biodiversity in human-dominated landscapes


Nutrient-rich water bodies are usually expected to host low species richness at the local scale (water body). Nevertheless, they can support a diverse and sometimes unique biodiversity when diversity is considered at a regional scale. This discrepancy between the two scales is well documented for natural water bodies, but little is known about biodiversity of artificial water bodies, like fish ponds. We hypothesise that nutrient-rich water bodies can collectively host high species richness at the regional scale. Thus, these are important ecosystems for the regional conservation of biodiversity. We investigated 84 fish ponds in the Dombes region, France, with five taxonomic groups: macrophytes, phytoplankton, macroinvertebrates, dragonflies, and amphibians. Species richness patterns were determined for α- (single pond), β- (between ponds), and γ- (regional pond network) levels. For most studied species groups, richness per fish pond and at the regional level proved to be relatively high in comparison with natural ponds in other landscapes. Contribution of α-diversity to regional diversity was highest for dragonflies with 41 %, and lowest for amphibians and macrophytes with 16 and 18 %, respectively. For macroinvertebrate families and phytoplankton genera it was intermediate. Contribution of β-diversity to regional diversity was similar for all species groups with 22–25 %. Furthermore, some ponds hosted a large number of less frequent species and some endangered species, indicating that the conservation of biodiversity of fish ponds must be established at a regional scale.


Alpha beta gamma (αβγ) diversity Dombes Dragonflies Fishpond Macrophytes 



We gratefully acknowledge the work of the many different persons who collected either water samples or species samples during the 3 years. In particular we thank Thomas Lhuillery and Mathieu Guérin for their large investment in the sampling and water analysis work. We also acknowledge the comments of the two reviewers which helped to significantly improve this paper. This study was supported by the French Ministry of the Environment and Sustainable Development through the DIVA2 programme, the Water Agency (Agence de l’Eau Rhône-Méditerranée-Corse) and the Rhône-Alpes Region. We sincerely thank the fish farmers who allowed us to work in and around their fish ponds.


  1. Akasaka M, Takamura N (2012) Hydrologic connection between ponds positively affects macrophyte α and γ diversity but negatively affects β diversity. Ecology 93:967–973PubMedCrossRefGoogle Scholar
  2. Arthaud F, Mousset M, Vallod D, Robin J, Wezel A, Bornette G (2012a) Effect of light stress from phytoplankton on the relationship between aquatic vegetation and the propagule bank in shallow lakes. Freshw Biol 57:666–675CrossRefGoogle Scholar
  3. Arthaud F, Vallod D, Robin J, Bornette G (2012b) Eutrophication and drought disturbance shape functional diversity and life-history traits of aquatic plants in shallow lakes. Aquat Sci 74(3):471–481CrossRefGoogle Scholar
  4. Arthaud F, Vallod D, Wezel A, Robin J, Bornette G (2013) Short-term succession of aquatic plant species richness along ecosystem productivity and dispersal gradients in shallow lakes. J Veg Sci 24(1):148–156CrossRefGoogle Scholar
  5. Biggs J, Williams P, Whitfield M, Nicolet P, Weatherby A (2005) 15 years of pond assessment in Britain: result and lessons learned from the work of pond conservation. Aquat Conserv 15:693–714CrossRefGoogle Scholar
  6. Bouvy M, Ba N, Ka S, Sane S, Pagano M, Arfi R (2006) Phytoplankton community structure and species assemblage succession in a shallow tropical lake (Lake Guiers, Senegal). Aquat Microb Ecol 45:147–161Google Scholar
  7. Brönmark C, Hansson LA (2002) Environmental issues in lakes and ponds: current state and perspectives. Environ Conserv 29:290–307CrossRefGoogle Scholar
  8. Broyer J, Calenge C (2010) Influence of fish-farming management on duck breeding in French fish pond systems. Hydrobiologia 637:173–185CrossRefGoogle Scholar
  9. Broyer J, Curtet L (2012) Biodiversity and fish farming intensification in French fishpond systems. Hydrobiologia 694:205–218CrossRefGoogle Scholar
  10. Carson WP, Barett GW (1988) Succession in old-field communities: effects of contrasting types of nutrient enrichment. Ecology 69:984–994CrossRefGoogle Scholar
  11. Chambers PA, Kalff J (1987) Light and nutrients in the control of aquatic plant community structure. I. In situ experiments. J Ecol 75:611–619CrossRefGoogle Scholar
  12. Chase JM, Leibold MA (2002) Spatial scale dictates the productivity-biodiversity relationship. Nature 416:427–430PubMedCrossRefGoogle Scholar
  13. Chovanec A, Waringer J (2001) Ecological integrity of river-floodplain systems-assessment by dragonfly surveys (Insecta: Odonata). Regul Rivers Res Manag 17:493–507CrossRefGoogle Scholar
  14. Colwell RK (2009) EstimateS: statistical estimation of species richness and shared species samples. Accessed Nov 2012
  15. Davies B, Biggs J, Williams P, Whitfield M, Nicolet P, Sear D, Bray S, Maund S (2008) Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agric Ecosyst Environ 125(1–4):1–8CrossRefGoogle Scholar
  16. Dodson SI, Arnott SE, Cottingham KL (2000) The relationship in lake communities between primary productivity and species richness. Ecology 81:2662–2679CrossRefGoogle Scholar
  17. Edvarsen A, Okland RH (2006) Variation in plant species richness in and adjacent to 64 ponds in SE Norwegian agricultural landscapes. Aquat Bot 85:79–91CrossRefGoogle Scholar
  18. Gómez-Rodríguez C, Díaz-Paniagua C, Bustamante J, Portheault A, Florencio M (2010) Inter-annual variability in amphibian assemblages: implications for diversity assessment and conservation. Aquat Conserv Mar Freshw Ecosyst 20:668–677CrossRefGoogle Scholar
  19. Grover JP, Chrzanowski TH (2005) Seasonal dynamics of phytoplankton in two warm temperate reservoirs. J Plankton Res 27:1–17CrossRefGoogle Scholar
  20. Hambright KD, Zohary T (2000) Phytoplankton species diversity control through competitive exclusion and physical disturbances. Limnol Oceanogr 45:110–122CrossRefGoogle Scholar
  21. Huston MA (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, EnglandGoogle Scholar
  22. Indermuehle N, Angélibert S, Rosset V, Oertli B (2010) The pond biodiversity index “IBEM”: a new tool for the rapid assessment of biodiversity in ponds from Switzerland. Part 2. Method description and examples of application. Limnetica 29:105–120Google Scholar
  23. Interlandi SJ, Kilham SS (2001) Limiting resources and the regulation of diversity in phytoplankton communities. Ecology 82(5):1270–1282Google Scholar
  24. Jeppesen E, Lauridsen TL, Mitchell SF, Christoffersen K, Burns CW (2000) Trophic structure in the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. J Plankton Res 22:951–968CrossRefGoogle Scholar
  25. Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439PubMedCrossRefGoogle Scholar
  26. Kloskowski J (2010) Fish farms as amphibian habitats: factors affecting amphibian species richness and community structure at carp ponds in Poland. Environ Conserv 37(2):187–194CrossRefGoogle Scholar
  27. Kloskowski J (2011) Differential effects of age-structured common carp (Cyprinus carpio) stocks on pond invertebrate communities: implications for recreational and wildlife use of farm ponds. Aquac Int 19(6):1151–1164CrossRefGoogle Scholar
  28. Knutson MG, Richardson WB, Reineke DM, Gray BR, Parmelee JR, Weick SW (2004) Agricultural ponds support amphibian populations. Ecol Appl 14(3):669–684CrossRefGoogle Scholar
  29. Koleff P, Gaston KJ, Lennon JK (2003) Measuring beta diversity for presence-absence data. J Anim Ecol 72:367–382CrossRefGoogle Scholar
  30. Kunii H (1991) Aquatic macrophyte composition in relation to environmental factors of irrigation ponds around Lake Shinji, Shimane, Japan. Vegetatio 97:137–148CrossRefGoogle Scholar
  31. Lande R (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:5–13CrossRefGoogle Scholar
  32. Le Roux X, Barbault R, Baudry J, Burel F, Doussan I, Garnier E, Herzog F, Lavorel S, Lifran R, Roger-Estrade J, Sarthou JP, Trommetter M (eds) (2008) Agriculture and biodiversity: benefiting from synergies. Multidisciplinary Scientific Assessment, Synthesis Report, INRA (France). Accessed July 2013
  33. Le Viol I, Chiron F, Julliard R, Kerbiriou C (2012) More amphibians than expected in highway stormwater ponds. Ecol Eng 47:146–154CrossRefGoogle Scholar
  34. Leclerc D, Angélibert S, Rosset V, Oertli B (2010) Les Libellules (Odonata) des étangs piscicoles de la Dombes. Martinia 26(3–4):98–108Google Scholar
  35. MacArthur R, Recher H, Cody M (1966) On the relation between habitat selection and species diversity. Am Nat 100:319–332CrossRefGoogle Scholar
  36. McNeely JA, Scherr SJ (2003) Ecoagriculture. Strategies to feed the world and save biodiversity. Island Press, Washington, DCGoogle Scholar
  37. Menetrey N, Sager L, Oertli B, Lachavanne JB (2005) Looking for metrics to assess the trophic state of ponds. Macroinvertebrates and amphibians. Aquat Conserv Mar Freshw Ecosyst 15:653–664CrossRefGoogle Scholar
  38. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resource Institute, Washington, DCGoogle Scholar
  39. Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001) What is the observed relationship between species richness and productivity? Ecology 82(9):2381–2396CrossRefGoogle Scholar
  40. Oberle M (2010) Schützt die Karpfenteichwirtschaft in Naturschuz- und Vogelschutzgebieten! Fischer & Teichwirt 2(2010):55–58Google Scholar
  41. Odum E, Barret GW (2005) Fundamentals of ecology. Thomson, Brooks/Cole, BelmontGoogle Scholar
  42. Oertli B (1995) Odonates de la vallée de la Saône. Martinia 11(2):35–42Google Scholar
  43. Oertli B, Auderset Joye D, Castella E, Juge R, Cambin D, Lachavanne J-B (2000) Diversité biologique et typologie écologique des E′ étangs et petits lacs de Suisse. OFEFP, University of Geneva, GenevaGoogle Scholar
  44. Oertli B, Auderset Joye D, Castella E, Juge R, Cambin D, Lachavanne J-B (2002) Does size matter? The relationship between pond area and biodiversity. Biol Conserv 104:59–70CrossRefGoogle Scholar
  45. Oertli B, AudersetJoye D, Castella E, Juge R, Lehmann A, Lachavanne J-B (2005) PLOCH: a standardised method for sampling and assessing the biodiversity in ponds. Aquat Conserv Mar Freshw Ecosyst 15:665–679CrossRefGoogle Scholar
  46. Plăiaşu R, Băncilă R, Samoilă C, Hartel T, Cogălniceanu D (2012) Waterbody availability and use by amphibian communities in a rural landscape. Herpetol J 22:13–21Google Scholar
  47. Pobel D, Robin J, Humbert JF (2011) Influence of sampling strategies on the monitoring of cyanobacteria in shallow lakes: lessons from a case study in France. Water Res 45:1005–1014PubMedCrossRefGoogle Scholar
  48. Prompt E, Guillerme N, Vallod D, Robin J, Wezel A, Bornette G, Marailhac D (2011) Les étangs piscicoles, un équilibre dynamique. Les cahiers techniques, Conservatoire Rhone-Alpes des Espaces Naturels, FranceGoogle Scholar
  49. Robin J, Wezel A, Bornette G, Oertli B, Arthaud F, Pobel D, Rosset V, Angélibert S, Vallod D (2013) Biodiversity in eutrophicated shallow lakes: determination of tipping points and tools for monitoring. Hydrobiologia. doi: 10.1007/s10750-013-1678-3
  50. Rosset V, Angélibert S, Arthaud F, Bornette G, Robin J, Wezel A, Vallod D, Oertli B (2014) Is eutrophication really a major impairment for small waterbodies’ biodiversity? J Appl Ecol (in press)Google Scholar
  51. Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems—a global problem. Environ Sci Pollut Res 10:126–139CrossRefGoogle Scholar
  52. Søndergaard M, Jeppesen E, Jensen JP, Amsinck SL (2005) Water framework directive: ecological classification of Danish lakes. J Appl Ecol 42:616–629CrossRefGoogle Scholar
  53. Tanguy H, Ferlin P, Suche JM (2008) Rapport sur le développement de l’aquaculture en France. Ministère de l’Agriculture et de la Pêche, ParisGoogle Scholar
  54. Tilman D (1982) Resource competition and community structure. Princeton University Press, USAGoogle Scholar
  55. Veech JA, Summerville KS, Crist TO, Gering JC (2002) The additive partitioning of species diversity: recent revival of an old idea. Oikos 99:3–9CrossRefGoogle Scholar
  56. Wezel A, Arthaud F, Dufloux C, Renoud F, Vallod D, Robin J, Sarrazin B (2013a) Varied impact of land use on water and sediment parameters on fish ponds of the Dombes agroecosystem, France. Hydrol Sci J 58(4):1–17CrossRefGoogle Scholar
  57. Wezel A, Guerin M, Robin J, Arthaud F, Vallod D (2013b) Management effects on water quality, sediments and fish production in extensive fish ponds in the Dombes region, France. Limnologica 43(3):210–218. doi: 10.1016/j.limno.2012.11.003
  58. Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:280–338CrossRefGoogle Scholar
  59. Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251CrossRefGoogle Scholar
  60. Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2003) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115:329–341CrossRefGoogle Scholar
  61. Wilson MV, Shmida A (1984) Measuring beta diversity with presence-absence data. J Ecol 72:1055–1064CrossRefGoogle Scholar
  62. Wilson SD, Tilman D (1991) Components of plant competition along an experimental gradient of nitrogen availability. Ecology 72:1050–1065CrossRefGoogle Scholar
  63. Xiao C, Dou W-F, Liu G-H (2010) Variation in vegetation and seed banks of freshwater lakes with contrasting intensity of aquaculture along the Yangtze River, China. Aquat Bot 92(3):195–199CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Limnology 2013

Authors and Affiliations

  • A. Wezel
    • 1
    Email author
  • B. Oertli
    • 2
  • V. Rosset
    • 2
    • 3
  • F. Arthaud
    • 4
  • B. Leroy
    • 1
  • R. Smith
    • 5
  • S. Angélibert
    • 2
  • G. Bornette
    • 6
  • D. Vallod
    • 1
    • 6
  • J. Robin
    • 1
    • 6
  1. 1.Department of Agroecology and EnvironmentISARA LyonLyon Cedex 07France
  2. 2.University of Applied Sciences Western Switzerland, Hepia Geneva Technology, Architecture and LandscapeJussy/GenevaSwitzerland
  3. 3.IRSTEA, UR Maly, LyonVilleurbanneFrance
  4. 4.UMR INRA 042 CARRTEL, University of SavoyLe Bourget-du-Lac CedexFrance
  5. 5.Cornell UniversityIthacaUSA
  6. 6.CNRS, UMR5023 “Laboratory of Ecology of Natural and Anthropised Hydrosystems”, University Lyon 1University of LyonVilleurbanneFrance

Personalised recommendations