Skip to main content

Advertisement

Log in

Effect of N and P enrichment on periphytic algal community succession in a tropical oligotrophic reservoir

  • Research Paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

This enrichment experiment was conducted to evaluate how nutrient availability drives colonization and succession of a periphytic algal community in a Brazilian tropical oligotrophic reservoir. Four treatments were designed using enclosures (n = 3): control (no nutrient addition), P+ (isolated phosphorus addition, N-limiting condition); N+ (isolated nitrogen addition, P-limiting condition), and NP+ (phosphorus and nitrogen combined addition, no limitation). Glass microscope slides were used for periphyton growth. Samplings were carried out at short, regular intervals (3–5 days) over 31 days. Isolated P addition promoted the highest structural organization, and both NP+ and P+ promoted the highest biomass accrual. Control condition favored Chromulina elegans (chrysophyte) dominance, whereas enrichment favored different species descriptors belonging mainly to cyanobacteria (N+) and green algae (P+, NP+). Phosphorus was the main environmental driver in the community structural changes. All periphyton attributes were significantly affected by enrichments in the advanced successional stages, when species were strongly associated to different amendments. Periphytic algal community was quite sensitive to enrichments, allowing identification of successional sequences in each treatment; however, colonization time is relevant when monitoring strategies are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahlgren G, Hyenstrand P (2003) Nitrogen limitation effects of different nitrogen sources on nutritional quality of two freshwater organisms Scenedesmus quadricauda (Chlorophyceae) and Synechococcus sp. (Cyanophyceae). J Phycol 39:906–917

    Article  CAS  Google Scholar 

  • American Public Health Association(APHA) (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • Bicudo DC, Forti MC, Bicudo CEM (2002) Parque Estadual das Fontes do Ipiranga (PEFI): unidade de conservação que resiste à urbanização de São Paulo. Secretaria do Meio Ambiente do Estado de São Paulo, São Paulo

    Google Scholar 

  • Biggs BJF, Stevenson RJ, Lowe RL (1998) A habitat matrix conceptual modes for stream periphyton. Arch Hydrobiol 143:21–56

    Google Scholar 

  • Borchardt MA (1996) Nutrients. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic Press, San Diego, pp 184–227

    Google Scholar 

  • Carrick HJ, Steinman AD (2001) Variation in periphyton biomass and species composition in Lake Ockeechobee, Florida (USA): distribution of algal guilds along environmental gradients. Arch Hydrobiol 152:411–438

    Google Scholar 

  • Engle DL, Melack JM (1993) Consequences of riverine flooding for seston and the periphyton of floating meadows in a Amazon floodplain lake. Limnol Oceanogr 38:1500–1520

    Article  CAS  Google Scholar 

  • Ferragut C, Bicudo DC (2009) Efeito de diferentes níveis de enriquecimento por fósforo sobre a estrutura da comunidade perifítica em represa oligotrófica tropical (São Paulo, Brasil). Rev Bras Bot 32:569–583

    Article  Google Scholar 

  • Ferragut C, Bicudo DC (2010) Periphytic algal community adaptive strategies in N and P enriched experiments in tropical oligotrophic reservoir. Hydrobiologia 646:295–309

    Article  CAS  Google Scholar 

  • Fore LS, Grafe C (2002) Using diatoms to assess the biological condition of large rivers in Idaho (U.S.A.). Freshw Biol 47:2015–2037

    Article  Google Scholar 

  • França RCS, Lopes MRM, Ferragut C (2009) Temporal variation of biomass and status nutrient of periphyton in shallow Amazonian Lake (Rio Branco, Brazil). Acta Limnol Bras 21:175–183

    Google Scholar 

  • Gaiser EE, Childers DL, Jones RD, Richards JH, Scinto LJ, Trexler JC (2006) Periphyton responses to eutrophication in the Florida Everglades: cross-system patterns of structural and compositional change. Limnol Oceanogr 51:617–630

    Article  CAS  Google Scholar 

  • Golterman HL, Clymo RS (1971) Methods for chemical analysis of freshwaters. Blackwell Scientific, International Biological Program, Oxford

  • Golterman HL, Clymo RS, Ohmstad MAM (1978) Methods for physical and chemical analysis of freshwaters. Blackwell Scientific, International Biological Program, Oxford

    Google Scholar 

  • Happey-Wood VM (1988) Ecology of freshwater planktonic green algae. In: Sandgreen CD (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge, pp 175–226

    Google Scholar 

  • Hasle GR, Fryxell GA (1970) Diatoms: cleaning and mouting for light and electron microscopy. Trans Am Microsc Soc 89:469–474

    Article  Google Scholar 

  • Havens KE, East TL, Rodusky AJ, Sharfstein B (1999) Littoral periphyton responses to nitrogen and phosphorus: an experimental study in a subtropical lake. Aquat Bot 63:267–290

    Article  Google Scholar 

  • Hillebrand H, Durselen C-D, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Hoagland KD, Roemer SC, Rosowski JR (1982) Colonization and community structure of periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). Am J Bot 69:188–213

    Article  Google Scholar 

  • Huszar VLM, Bicudo DC, Giani A, Ferragut C, Martinelli LA, Henry R (2005) Subsídios para compreensão sobre a limitação de nutrientes ao crescimento do fitoplâncton e perifíton em ecossistemas continentais lênticos no Brasil. In: Roland F, César D, Marinho M (eds) Lições em Limnologia: Fronteiras Conceituais. RiMa Editora, São Carlos, pp 243–260

    Google Scholar 

  • Krebs CJ (1999) Ecological methodology. Addisson Wesley Longman, Menlo Park

    Google Scholar 

  • Lund JWG, Kipling C, Le Cren ED (1958) The inverted microscope method of estimating algal numbers and statistical basis of estimation by counting. Hydrobiologia 11:143–170

    Article  Google Scholar 

  • Luttenton MR, Lowe RL (2006) Response of a lentic periphyton community to nutrient enrichment at low N:P ratios. J Phycol 42:1007–1015

    Article  CAS  Google Scholar 

  • Mackeret FJH, Heron J, Talling JF (1978) Water analysis: some revised methods for limnologists. Titus Wilson & Son Ltd., Kendall (Freshwater Biological Association Scientific Publication no. 36)

  • McCormick PV, Stevenson RJ (1991) Mechanisms of benthic algal succession in lotic environments. Ecology 72:1835–1848

    Article  Google Scholar 

  • McCormick PV, Stevenson RJ (1998) Periphyton as a tool for ecological assessment and management in the Florida Everglades. J Phycol 34:726–733

    Article  Google Scholar 

  • McCune B, Mefford MJ (1999) PC-ORD for Windows. Multivariate analysis of ecological data, version 4.10. MjM Software Design, Oregon, p 47

    Google Scholar 

  • Moutin T, Thingstad TF, Wambeke FV, Marie D, Slamyk G, Raimbault P, Claustre H (2002) Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium Synechococcus. Limnol Oceanogr 47(5):1562–1567

    Article  CAS  Google Scholar 

  • Oliver RL, Ganf GG (2000) Freshwater blooms. In: Whitton BA, Potts M (eds) The ecology of Cyanobacteria their diversity in time and space. Kluwer, London, pp 149–194

    Google Scholar 

  • Pan Y, Stevenson RJ, Vaithiyanathan P, Slate J, Richardson CJ (2000) Changes in algal assemblages along observed and experimental phosphorus gradients in a subtropical wetland, USA. Freshw Biol 44:339–353

    Article  Google Scholar 

  • Peterson CG, Grimm NB (1992) Temporal variation in enrichment effects during periphyton succession in a nitrogen-limited desert stream ecosystem. J N Am Benthol Soc 11:20–36

    Article  Google Scholar 

  • Pickett STA, Collins SL, Armesto JJ (1987) Models, mechanisms and pathways of succession. Bot Rev 53:335–371

    Article  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221

    CAS  Google Scholar 

  • Rodrigues L, Bicudo DC (2004) Periphytic algae. In: Thomaz SM, Agostinho AA, Hahan NS (eds) Upper Paraná River and its floodplain: physical, aspects, ecology and conservation. Blackhuys Publishers, Leiden, pp 125–143

    Google Scholar 

  • Sandgreen CD (1988) The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In: Sandgreen CD (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge, pp 9–104

    Google Scholar 

  • Sekar R, Nair KVK, Rao VNR, Venugopalan VP (2002) Nutrient dynamics and successional changes in a lentic freshwater biofilm. Freshw Biol 47:1893–1907

    Article  Google Scholar 

  • Sekar R, Venugopalan VP, Nandakumar K, Nair KVK, Rao VNR (2004) Early stages of biofilm succession in a lentic freshwater environment. Hydrobiologia 512:97–108

    Article  Google Scholar 

  • Solorzano L (1969) Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol Oceanogr 14:799–801

    Article  CAS  Google Scholar 

  • Sommer U (1999) A comment on the proper use of nutrient ratios in microalgal ecology. Arch Hydrobiol 146:55–64

    CAS  Google Scholar 

  • Stevenson RJ, Peterson CG, Kirschtel DB, King CC, Tuchman NC (1991) Density dependent growth ecological strategies and effects of nutrients and shading on benthic diatom succession in streams. J Phycol 27:59–69

    Article  Google Scholar 

  • Strickland JDH, Parsons TR (1965) A manual of sea water analysis. Bull Fish Res Board Can 125:1–185

    Google Scholar 

  • Tsygankov AA (2007) Nitrogen-fixing cyanobacteria: a review. Appl Biochem Microbiol 43:250–259

    Article  CAS  Google Scholar 

  • Utermöhl H (1958) Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Valderrama GC (1981) The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar Chem 10:109–112

    Article  CAS  Google Scholar 

  • Van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth J Aquat Ecol 28:117–133

    Article  Google Scholar 

  • Vercellino IS, Bicudo DC (2006) Sucessão da comunidade de algas perifíticas em reservatório oligotrófico tropical (São Paulo, Brasil): comparação entre período seco e chuvoso. Rev Brasil Bot 29:363–377

    Article  Google Scholar 

  • Vymazal J, Richardson CJ (1995) Species composition, biomass, and nutrient content of periphyton in the Florida Everglades. J Phycol 31:343–354

    Article  Google Scholar 

  • Vymazal J, Craft CB, Richardson CJ (1994) Periphyton response to nitrogen and phosphorus additions in Florida Everglades. Algol Stud 73:75–97

    Google Scholar 

Download references

Acknowledgments

Authors are indebted to FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for the first author’s Doctoral Fellowship, and to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for DCB’s grant (Grant no. 305072/2009-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Ferragut.

Additional information

Handling Editor: Ho-Dong Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferragut, C., de Campos Bicudo, D. Effect of N and P enrichment on periphytic algal community succession in a tropical oligotrophic reservoir. Limnology 13, 131–141 (2012). https://doi.org/10.1007/s10201-011-0367-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-011-0367-z

Keywords