, Volume 13, Issue 1, pp 13–25 | Cite as

Phytoplankton structure and diversity in the eutrophic-hypereutrophic reservoir Paso de las Piedras, Argentina

  • Carolina FernándezEmail author
  • Elisa R. Parodi
  • Eduardo J. Cáceres
Research paper


This study aimed at analyzing the phytoplankton structure and dynamics in Paso de las Piedras Reservoir, Argentina, through the study of dominant species, diversity and similarity in relation with the abiotic environment. Samples were collected weekly or biweekly (January 2004–June 2005) at four sampling stations. The reservoir experienced a seasonal progression in phytoplankton composition that underlines six successional periods, each one characterized by the dominance of one or a few species. Cyanobacteria, green algae and diatoms were the most important constituents of the reservoir’s phytoplankton. Cyanobacteria dominated during summer and early autumn, green algae during late autumn and early winter, and diatoms during winter and spring. A high abundance of R. lacustris (Cryptophyceae) was observed during late September and early October. The general pattern of species succession is coherent with the general model of plankton seasonal succession described by the PEG model; however, the major discrepancy is the extremely short clear water phase observed. Successional periods were associated with changes in abiotic variables, and they showed differences in ecological traits. Cyanobacteria-Dictyosphaerium, Cyclotella, Stephanodiscus and Anabaena-diatom periods were characterized by a low number of cells, high diversity, with both dominance and specific richness low. On the contrary, during Cyanobacteria and Cyanobacteria II periods, the highest abundance was observed associated with low diversity and high dominance.


Phytoplankton succession SIMI index Diversity 



This study is part of a PhD thesis project currently carried out by C. Fernández, National Research Council (CONICET) Fellow. The Secretary of Science and Technology of the Universidad Nacional del Sur provided funds, via grant PGI CSU-24 B/145, to E.R. Parodi, Research Member of the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET). E.J. Cáceres is a Research Member of the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, República Argentina (CIC). The authors appreciate the valuable collaborations of the staff of the Laboratorio de Hidraulica at the Universidad Nacional del Sur, Autoridad del Agua (ADA) from Buenos Aires Province and PROFERTIL, which provided hydrological and physicochemical data.


  1. American Public Health Association (1992) Standard methods for the examination of water and wastewater. APHA/AWWA/WPCF, WashingtonGoogle Scholar
  2. Calijuri MC, Dos Santos ACA, Jati S (2002) Temporal changes in the phytoplankton community structure in a tropical and eutrophic reservoir (Barra Bonita, S.P.-Brazil). J Plankton Res 24:617–634CrossRefGoogle Scholar
  3. Chalar G (2009) The use of phytoplankton patterns of diversity for algal bloom management. Limnologica 39:200–208CrossRefGoogle Scholar
  4. Chu Z, Jin X, Iwam N, Inamori Y (2007) The effect of temperature on growth characteristics and competitions of Microcystis aeruginosa and Oscillatoria mougeotii in a shallow, eutrophic lake simulator system. Hydrobiologia 581:217–223CrossRefGoogle Scholar
  5. Connell J (1978) Diversity in tropical rain forests and coral reef. Science 199:1304–1310CrossRefGoogle Scholar
  6. De León L, Chalar G (2003) Phytoplankton abundance and diversity at Salto Grande Reservoir (Uruguay–Argentine). Seasonal cycle and spatial distribution. Limnetica 22:103–113Google Scholar
  7. Deneke R, Nixdorf B (1999) On the occurrence of clear-water phases in relation to shallowness and trophic state: a comparative study. Hydrobiologia 408(409):251–262CrossRefGoogle Scholar
  8. Dowing JA, Watson SB, McCauley E (2001) Predicting Cyanobacteria dominance in lakes. Can J Fish Aquat Sci 58:1905–1908CrossRefGoogle Scholar
  9. Echenique RO, Ferrari L, González D (2001) Cyanobacterial blooms in Paso de las Piedras Reservoir (Buenos Aires, Argentina). Harmful Algae News 22:3Google Scholar
  10. Elbert F, Schanz F (1989) The causes of change in the diversity and stability of phytoplankton communities in small lakes. Freshw Biol 21:237–251CrossRefGoogle Scholar
  11. Fernández C (2010) Limnological characterization of a eutrophic environment: Paso de las Piedras Reservoir, Argentina. Bioecology of the phytoplankton. Dissertation, Universidad Nacional del Sur, Argentina (in Spanish)Google Scholar
  12. Fernández C, Parodi ER (2005) New Chlorococcales for Paso de las Piedras Reservoir (Buenos Aires, Argentina). Bol Soc Argent Bot 40:199–205 (in Spanish)Google Scholar
  13. Fernández C, Parodi ER, Cáceres EJ (2009) Limnological characteristics and trophic state of Paso de las Piedras Reservoir: an inland reservoir in Argentina. Lakes Reserv Res Manag 14:85–101CrossRefGoogle Scholar
  14. Gavrieli J (1984) Studies on the autoecology of the freshwater algae flagellate Rhodomonas lacustris Pascher et Ruttner. Dissertation, Swiss Federal Institute of Technology of Zurich, ZurichGoogle Scholar
  15. Guerrero JM, Echenique RO (1997) Ceratium hirundinella blooms in Argentine reservoirs. Harmful Algae News 16:3Google Scholar
  16. Haande S, Rohrlack T, Semyalo RP, Brettum P, Edvardsen B, Lyche-Solheim A, Sørensen K, Larsson P (2011) Phytoplankton dynamics and cyanobacterial dominance in Murchison Bay of Lake Victoria (Uganda) in relation to environmental conditions. Limnologica 41:20–29CrossRefGoogle Scholar
  17. Hardin G (1960) The competitive exclusion principle. Science 131:1291–1297Google Scholar
  18. Harris GP (1986) Phytoplankton ecology: structure, function and fluctuation. Chapman and Hall, LondonCrossRefGoogle Scholar
  19. Havens KE (2008) Cyanobacteria blooms: effects on aquatic ecosystems. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: advances in experimental medicine and biology. Springer Science, New York, pp 733–748CrossRefGoogle Scholar
  20. Havens KE, Phlips EJ, Cichra MF, Li B (1998) Light availability as a possible regulator of cyanobacteria species composition in a shallow subtropical lake. Freshw Biol 39:547–556CrossRefGoogle Scholar
  21. Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424CrossRefGoogle Scholar
  22. Hindák F (1988) Studies on the chlorococcal algae (Chlorophyceae) IV. Biol Prace 34:1–263Google Scholar
  23. Hindák F (1990) Studies on the chlorococcal algae (Chlorophyceae) V. Biol Prace 36:1–225Google Scholar
  24. Holzmann R (1993) Seasonal fluctuations in the diversity and compositional stability of phytoplankton communities in small lakes in upper Bavaria. Hydrobiologia 249:101–109CrossRefGoogle Scholar
  25. Huisman J, Hulot FD (2005) Population dynamics of harmful cyanobacteria. Factors affecting species composition. In: Huisman J, Matthijs HCP, Visser PM (eds) Harmful cyanobacteria. Springer, Netherlands, pp 143–176CrossRefGoogle Scholar
  26. Huszar VLM, Silva LHS, Marinho M, Domingos P, Sant’Anna CL (2000) Cyanoprokaryote assemblages in eight productive tropical Brazilian waters. Hydrobiologia 424:67–77CrossRefGoogle Scholar
  27. Hutchinson GE (1961) The paradox of the plankton. Am Nat 95:137–146CrossRefGoogle Scholar
  28. Intartaglia C, Sala SE (1989) Seasonal variation of the phytoplankton in a non stratifying lake: Paso de las Piedras Impounding, Argentina. Rev Bras Biol 49:873–882 (in Spanish)Google Scholar
  29. Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Pedersen LJ, Jensen L (1997) Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343):151–164CrossRefGoogle Scholar
  30. Komárek J, Anagnostidis K (1989) Modern approach to the classification system of Cyanophytes. 4. Nostocales. Arch Hydrobiol 56:247–345Google Scholar
  31. Komárek J, Anagnostidis K (1998) Cyanoprokaryota. 1. Teil: Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa 19/1. Fischer Verlag, StuttgartGoogle Scholar
  32. Komárek J, Anagnostidis K (2005) Cyanoprokaryota. 2. Teil: Oscillatoriales. In: Büdel B, Krienitz L, Gärtner G, Schagerl M (eds) Süsswasserflora von Mitteleuropa 19/2. Elsevier GmbH, MünchenGoogle Scholar
  33. Komárek J, Fott B (1983) Chlorophyceae (Grünalgen), Ordnung Chloroccales. In: Huber-Pestalozzi G (ed) Das Phytoplankton des Süsswassers. Systematik und Biologie. Die Binnengewässer 16. E. Schweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  34. Krammer K, Lange-Bertalot H (1986) Bacillariophyceae 1. Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, JenaGoogle Scholar
  35. Krammer K, Lange-Bertalot H (1988) Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, JenaGoogle Scholar
  36. Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, JenaGoogle Scholar
  37. Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, JenaGoogle Scholar
  38. Kruk C, Mazzeo N, Lacerot G, Reynolds CS (2002) Classification schemes of phytoplankton: selecting and ecological approach the analysis of species temporal replacement. J Plankton Res 24:901–912CrossRefGoogle Scholar
  39. Lampert W, Schober U (1978) The regular pattern of spring algal bloom and extremely clear water in Lake Constance as a result of climatic conditions and planktonic interactions. Arch Hydrobiol 82:364–386Google Scholar
  40. Mischke U (2003) Cyanobacteria associations in shallow polytrophic lakes: influence of environmental factors. Acta Oecol 24:S11–S23CrossRefGoogle Scholar
  41. Moustaka-Gouni M (1993) Phytoplankton succession and diversity in a warm monomictic, relatively shallow lake: Lake Volvi, Macedonia, Greece. Hydrobiologia 249:33–42CrossRefGoogle Scholar
  42. Nixdorf B, Deneke R (1997) Why ‘very shallow’ lakes are more successful opposing reduced nutrient loads. Hydrobiologia 342(343):269–284CrossRefGoogle Scholar
  43. Oliver RL, Ganf GG (2000) Freshwater blooms. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer, Dordrecht, pp 49–194Google Scholar
  44. Padisák J, Borics G, Fehér G, Grigorszky I, Oldal I, Schmidt A, Zámbóné-Doma Z (2003) Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502:157–168CrossRefGoogle Scholar
  45. Paerl HW (1988) Growth and reproductive strategies of freshwater blue-green algae (Cyanobacteria). In: Sandgren CD (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, New York, pp 261–315Google Scholar
  46. Pielou EC (1966) Species diversity and pattern diversity in the study of ecological succession. J Theor Biol 10:370–383PubMedCrossRefGoogle Scholar
  47. Pielou EC (1969) An introduction to mathematical ecology. Wiley-Interscience, New YorkGoogle Scholar
  48. Pizzolon L, Tracanna B, Prósperi C, Guerrero JM (1999) Cyanobacterial blooms in Argentinean inland waters. Lakes Reserv Res Manag 4:01–05CrossRefGoogle Scholar
  49. Rahman AK, Al Bakri D, Ford P, Church T (2005) Limnological characteristics, eutrophication and cyanobacterial blooms in an inland reservoir, Australia. Lakes Reserv Res Manag 10:211–220CrossRefGoogle Scholar
  50. Reynolds CS (1988) The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Verh Int Ver Theor Angew Limnol 23:683–691Google Scholar
  51. Reynolds CS (1993) Scales of disturbance and their role in plankton ecology. Hydrobiologia 249:157–172CrossRefGoogle Scholar
  52. Rohr JL (1977) Changes in diatom community structure due to environmental stress. Dissertation, Bowling Green State University, Bowling Green, OhioGoogle Scholar
  53. Rott E (1981) Some results from phytoplankton counting intercalibration. Schweiz Z Hydrol 43:34–62CrossRefGoogle Scholar
  54. Sala SE (1990a) Ultrastructure of some freshwater Bacillariophyceae, that are new records for Argentina. Darwiniana 30:219–221 (in Spanish)Google Scholar
  55. Sala SE (1990b) Morphological variations of Surirella ovalis (Bacillariophyceae). Darwiniana 30:215–218 (in Spanish)Google Scholar
  56. Sala SE (1996a) Diatom flora of Paso de las Piedras Reservoir (Buenos Aires Province: Argentina) II: Fam. Naviculaceae (Pennales). Bol Soc Argent Bot 32:95–121 (in Spanish)Google Scholar
  57. Sala SE (1996b) Diatom flora of Paso de las Piedras Impounding (Argentina) III. Fam. Epithemiaceae, Bacillariaceae and Surirellaceae (O. Pennales). Cryptogamie Algol 17:95–122 (in Spanish)Google Scholar
  58. Sala SE (1996c) Diatom flora of Paso de las Piedras Reservoir (Argentina) I: Fam. Diatomaceae, Fam. Acanthaceae and Fam. Eunotiaceae (O. Pennales). Darwiniana 34:251–266 (in Spanish)Google Scholar
  59. Sala SE (1997) Diatom flora of Paso de las Piedras Impounding, Buenos Aires Province IV: Order Centrales. Gayana Bot 54:1–14Google Scholar
  60. Sala SE, Intartaglia C (1985) Taxonomic study of phytoplankton of Paso de las Piedras Impounding (Buenos Aires, Argentina) I. Lilloa 36:149–263 (in Spanish)Google Scholar
  61. Shannon CE (1948) A mathematical theory of communications. Bell Syst Tech J 27:379–423Google Scholar
  62. Shapiro J (1990) Current beliefs regarding dominance of bluegreens: the case for the importance of CO2 and pH. Verh Int Ver Theor Angew Limnol 24:38–54Google Scholar
  63. Simpsons EH (1949) Measurement of diversity. Nature 163:688CrossRefGoogle Scholar
  64. Soares MCS, Rocha MI, Marinho MM, Azevedo SMFO, Branco CWC, Huszar VLM (2009) Changes in species composition during annual cyanobacterial dominance in a tropical reservoir: physical factors, nutrients and grazing effects. Aquat Microb Ecol 57:137–149CrossRefGoogle Scholar
  65. Sommer U, Padisák J, Reynolds CS, Juhász-Nagy P (1983) Hutchinson’s heritage: the diversity–disturbance relationship in phytoplankton. Hydrobiologia 249:1–7CrossRefGoogle Scholar
  66. Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in freshwaters. Arch Hydrobiol 106:433–471Google Scholar
  67. Stander JM (1970) Diversity and similarity of benthic fauna of Oregon. Dissertation, Oregon State University, CorvallisGoogle Scholar
  68. Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25:1331–1346CrossRefGoogle Scholar
  69. Trifonova I (1993) Seasonal succession of phytoplankton and its diversity in two highly eutrophic lakes with different conditions of stratification. Hydrobiologia 249:93–100CrossRefGoogle Scholar
  70. Tschumi PA, Bangerter B, Zbären D (1982) Ten years of limnological research at Bielersee (1972–1981). Vierteljahrsschr Naturforsch Ges Zürich 127:337–355 (in German)Google Scholar
  71. Utermöhl H (1958) To the perfection of quantitative phytoplankton methodology. Mitt Int Ver Theor Angew Limnol 9:1–38 (in German)Google Scholar
  72. Watson SB, McCauley E, Dowing JA (1997) Patterns in phytoplankton taxonomic composition across temperate lakes of different nutrient status. Limnol Oceanogr 42:487–495CrossRefGoogle Scholar
  73. Wetzel RG (2001) Limnology. Lake and river ecosystems. Academic Press, San DiegoGoogle Scholar

Copyright information

© The Japanese Society of Limnology 2011

Authors and Affiliations

  • Carolina Fernández
    • 1
    Email author
  • Elisa R. Parodi
    • 1
    • 2
  • Eduardo J. Cáceres
    • 3
  1. 1.CONICET-BB-IADO (Instituto Argentino de Oceanografía)Bahía BlancaArgentina
  2. 2.Laboratorio de Ecología Acuática, Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
  3. 3.Laboratorio de Ficología y Micología, Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations